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Abstract
When bridge construction is considered, the application of externally post-tensioned segmental members is a very attractive 
solution, especially when compared to more classical construction methods.  The use of this solution results in smaller precast 
elements tied together by post-tensioned tendons, upbringing such advantages as fast and versatile construction, high quality 
control and lower overall cost.  In this paper, a formulation based on the Finite Element Method is discussed.  This formulation 
is used to numerically simulate the structural behavior of members composed of externally post-tensioned segments.  These 
analyses not only allow serviceability limit states verifications when sections are fully compressed, but also allow verifications of 
ultimate limit states when joint openings and load transfers at the joints are considered.  Additionally, to evaluate the accuracy 
of the numerical results of the computational model a comparison to experimental data from the literature is performed.
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Resumo
Aduelas protendidas externamente, utilizadas em pontes, contrastam com as clássicas construções monolíticas, consistindo 
de “pequenos” segmentos pré-moldados protendidos por cordoalhas externas. Há muitas vantagens na utilização deste tipo 
de composição, como rapidez e versatilidade na construção, alto controle de qualidade e economia. No presente trabalho, 
discute-se uma formulação, baseada no método dos elementos finitos, para simular o comportamento de estruturas compos-
tas por aduelas externamente protendidas. Esta formulação permite tanto a análise de situações de serviço, onde as seções 
permanecem completamente comprimidas, como também de situações últimas, onde se considera a abertura das juntas 
e a transferência de esforços através das mesmas. Para verificar a adequação do modelo computacional, compararam-se 
resultados numéricos com valores experimentais disponíveis na literatura. 

Palavras-chave: Elementos finitos, Construções segmentadas, Pontes, Protensão externa.
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1 Introduction

It is not unusual to have the main aspects of a bridge de-
sign defined after the choice of its construction method.  The 
choice of construction method is based on numerous factors 
such as the span length, equipment availability, construc-
tion timetable, and economic aspects.  The span-by-span 
method for prestressed bridge construction, as illustrated in 
figure 1, has been largely adopted in many countries.
The main advantages of the use of precast segments are 
the high quality control, the need for smaller construction 

sites, fast construction, and the flawless finishing due to 
the metal or concrete formwork.
Recently, a growing attention has been directed towards 
the external prestressing system.  In this system, the ca-
bles are placed inside the precast segments, but they are 
in contact with the concrete only at the deviation blocks 
and anchorages.  They are inside polyethylene sheaths 
and embedded in a layer of cement grout for protection 
against corrosion (figure 2).
The Bang Na Expressway Bridge [3] in Bangkok, Thailand, 
was built using this technique of externally prestressed 
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with dry joints. It is the longest in the world with its 55 
km in total length (34 miles), and is the largest struc-
ture that has been built with precast segments (figure 3a).  
The construction technique allowed 1,800 segments to be 
manufactured per month.  One of these segments, weigh-
ing 10 tons and measuring 27 m (89 ft) in length, is shown 
being transported in figure 3b.
The objective of this paper is to present a computational 
model based on the finite element method, and which 
was developed by Ribeiro [4], for the study of seg-
mentally precast structures under plane stress state. 
The modeling of joints between segments of this type 
of structure with one-dimensional contact elements by 
Habraken and Cescotto [5] is particularly evaluated.  
Initially, a finite element model for nonlinear analysis 
of the concrete and the steel is presented.  Later, a 
formulation for the contact elements that model the 
joints between the segments of the structure will be 
described. 
Under service load, the structure is completely under com-
pression and, consequently, its joints are closed.  During 
ultimate conditions, the joints are opened because of ten-
sile stresses (figure 4), which results in a stiffness reduc-

tion of the structure.  The constitutive models used, the 
different prestressing systems implemented in the com-
putational model, as well as comparisons between the nu-
merical results with experimental ones gathered from the 
literature are also presented, Aparicio et al. [6].

2 Elasto-viscoplastic analysis by finite  
 element modeling

The implemented model presents an incremental algo-
rithm on loads by Owen and Hinton [7] for the solution 
of the elastoplastic part of the problem. An incremental 
algorithm in time, also  by Owen and Hinton [7] same 
authors, is used for the viscoelastic part.  The behavior 
of the materials is determined as a function of an elasto-
viscoplastic model represented by one spring in series 
with one viscous dashpot and in parallel with one friction 
slider element, as shown in figure 5.  With the use of this 
model, solution to elasto-plastic problems can be found 
when the structure reaches a steady state. On the other 
hand, solution to the viscoelastic problem, is achieved 
when the equivalent yield stress of the viscous dashpot 
is assigned to zero.
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According to Pande et al. [8], the overlay model could be 
used when a response from a complex material such as 
concrete is desired, since it can simulate viscoelastic be-
havior with aging (figure 6).  The material to be analyzed 
is divided into a convenient number of layers with distinct 
mechanical properties, and under the same total defor-
mation.  The total stress field is obtained by adding the 
contributions from each layer.
The rheological model is composed by a number of Max-
well elements in paralle. The model’s parameters are the 
thicknesses of the layers, ei, their moduli of elasticity, Ei, 
their dampening constants, γi, . A model with five layers 
was adopted.

3 Application of the finite element method

3.1	 Finite	Elements	for	the	concrete

The concrete is represented by two-dimensional iso-

parametric elements of 4, 8, or 9 nodes [7].  A for-
mulação dos elementos isoparamétricos quadráticos 
permite gerar elementos com lados curvos e mode-
lar mais adequadamente os contornos irregulares de 
peças a serem analisadas. The elements present two 
degrees of freedom per node, corresponding to the 
translations in directions x and y of the global system 
of coordinates and ξ and η of the local normalized 
coordinates.  Joints are represented by one-dimen-
sional contact elements of 3 nodes, and are discussed 
in the next section.  The nodes of each contact ele-
ment match with the nodes of the concrete element to 
which it is associated.

3.2	 Finite	elements	for	the	steel

The embedded reinforcement model is typically used 
in finite element analyses of structural concrete. The 
embedded reinforcement model proposed by Elwi and 
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Hrudey [9] is used in this paper. The model considers 
the reinforcement subjected only to longitudinal axial 
loads and the displacements of any of its points equal to 
the concrete element in which it is embedded.  There-
fore, reinforcement bars only contribute to the longi-
tudinal stiffness of concrete elements, allowing an ar-
bitrary disposition of bars with no generation of new 
variables to the problem.  When external prestressing 
cables are considered, they are assigned dummy ele-
ments that are considered parallel to the real elements 
of the structure. 

4 Contact Elements 

4.1	 Formulation

The formulation used (Habraken and Cescotto [5]) con-
siders two solids A and B with volumes ΩA and ΩB and 
perimeters ΓA and ΓB, respectively, as shown in figure 7.  

Both solids are in contact through the surfaces ΓC
A and 

ΓC
B.  The coordinates of the local system are defined by 

the vector x, which is normal to the contact surface at 
point S (SA or SB), and by the vector y, which is tangent 
to the same surface, at the same point.  It is considered 
that the nodes 1, 2 and 3 pertain to the contact element 
of the solid A and the nodes 4, 5 and 6 pertains to the 
contact element of the solid B, as shown in figure 8.  The 
contact elements are described through their global coor-
dinates ( X ,Y ) :

where j is the number of the node.
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The local reference system 
A A( x , y ) is given by:

In order to determine the co-sines of β , it is necessary 
to define a coordinate s and a differ- ential element 
of length ds along the contact element (illustrated in fig-
ure 9). Thus:

where:

and n is the number of nodes of the contact element.
The one-dimensional interpolation function, jH , are ex-
pressed in terms of a normalized coordinate, ζ, which lim-
its are 1 1ζ− ≤ ≤ + , as shown in the next section. Thus, 
the global coordinates of a point located in the interior of 
an element are expressed in terms of interpolation func-
tions, jH , where  j is the contact element number:

Therefore the global coordinates of 
AS  are:

where ζ A  is the natural coordinate of 
AS .

In order to determinate the opposite contact element, it is 
necessary to trace a line that passes through  

AS  and is 
directed toward 

Ax . The equation of this line is given by:

where λ  is the distance between 
AS  and the point where 

the line intercepts the opposite contact element.. There-
fore the equation of the line is given by:

where the global coordinates 
BX and 

BY are given by:

where  ζ B  is the natural coordinate of 
BS .
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Applying equation (10) in equation (9), the following equa-
tion is found:

Solving the system, the values for Bζ  and λ  can be 
found, where Bζ  is the location of 

BS  and λ  is the dis-
tance between 

AS  and 
BS  (integration points of the 

contact elements).
The determination of λ  at the element nodes is not 
readily done, since there is no explicit form for the in-
verse of equation 12. However, the inverse mapping can 
be done numerically through a non-linear system solu-
tion algorithm.

Upon determining the distance λ to the points that define 
the geometry of the contact element being analyzed, a 
second phase is carried out where the opposed contact 
element is identified by ζB between -1 and +1.  The third 
phase consists of the verification of whether the two bod-
ies are together (λ ≥ 0), which adds terms to the stiff-
ness matrix of the structure. With the increase of the 
distance between the bodies (λ < 0), these terms are 
removed and the nodes of the contact elements begin 

to have different displacements from those of opposed 
contact element. 

4.2	 Contact	element	shape	functions

The interpolation functions for the contact elements are 
Lagrangian polynomials defined according to Zienkiewicz 
[10] as:

which is equal to 1 when ζ = ζk, and zero when ζ = ζj, 
where i ≠ k.
For the three-node element, the following shape functions 
are found:

5  Constitutive models

5.1	 Introduction

Non-linear behavior of materials should be considered for 
the analysis of reinforced and prestressed concrete struc-
tures. A typical structural concrete behavior is presented 
in figure 10. The sources of non-linearities are: concrete 
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cracking; concrete and steel plastification; differences in 
tensile and compressive strengths of concrete; nonlinear 
stress-strain relationship and time-related phenomena 
such as concrete creep and shrinkage and prestressing 
steel relaxation. Other factors also include aggregate in-
terlock and the dowel effect. Through the finite element 
analysis, one can carry out a more systematic approach 
to these phenomena and analyze each integration point in 
both concrete and steel elements.

5.2	 Constitutive	models	for	the	concrete	
	 in	compression

A hardening elasto-plastic model was used for concrete in 
compression. The model is composed of a failure criterion, 
a yielding criterion, and a hardening rule.  For the un-
cracked concrete, an isotropic behavior was admitted.  Its 
failure surface can be expressed as:

where I1 is the first invariant of the stress tensor, and J2 and 
J3 are the second and the third invariants of the deviatoric 
stress tensor.  In this paper, the failure criterion proposed 
by Ottosen [11] and that is also adopted by the CEB-FIP 
Model Code 1990 [12] was assumed, and is given as:

where fcm is the mean compressive strength of concrete 
and:

The four parameters of the model, α, β, c1 and c2 are de-
termined according to the CEB-FIP Model Code 1990 [12] 
from the relation between the mean uniaxial compressive 
strength, fcm, and the mean uniaxial tensile strength, ftm, 
of the concrete, which is given as:

where:

with C varying from 0.095 to 0.185, and the result, ftm, given 
in kNcm-2.  It should be noted that Ottosen failure criterion 
reduces to either Von Mises or Drucker-Prager criteria when β 
= c2 = 0 or α = c2 = 0 are, respectively, assumed.  Another as-
pect considered in this paper is that the concrete in compres-
sion has isotropic hardening.  When considering zeroed initial 
yielding stresses, the plastic region, i.e. where the material 
behaves elastoplastically with hardening, occurs for values of 
σef inside the 0 ≤ σef ≤ fcm interval, as illustrated in figure 11.
The hardening rule defines the way by which the yielding 
surfaces move (load surfaces), during plastic deformation. 
In this paper, a stress-strain curve (figure 12) proposed 
by the CEB-FIP Model Code 1990 [12] to represent the 
concrete behavior under uniaxial compression was used. 
The stress-strain curve is given by:  

5.3	 Constitutive	models	for	concrete
	 in	tension

The smeared crack approach was used to model cracked 
concrete. In this approach, the stress-strain relation is up-
dated after a crack develops, with no modification of the 
finite element mesh topology during the analysis.
The concrete in tension is modeled as being an elastic material 
with strain-softening following Ottosen failure criterion.  When 
a material point reaches the failure surface, the failure state in 
tension or in compression is identified according to the crite-
rion established by the CEB-FIP Model Code 1990 [12] as:
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• se σ1 ≥ ftm/2, the integration point has been cracked;
• se σ1 < ftm/2, the integration point has been crushed.
Cracks form on the orthogonal plane to σ1.  After that, it 
is considered that the concrete is orthotropic with insig-
nificant Poisson effect and local material axes coinciding 
with the principal stress directions.  The crack direction is 
considered to be fixed, whose approach is known as ‘fixed 
crack approximation’.  For a cracked point, a second crack 
occurrence can be verified, which, for simplicity, is consid-
ered orthogonal to the first one.  If two cracks occur, the 
concrete is not supposed to contribute any longer to the 
structure’s strength. The concrete stresses are then ze-
roed at the point under consideration.  The crack direction 
is calculated solving an eigenvalue problem, i.e. by de-
termining the co-sines of the angles formed between the 
eigenvalue equivalent to the maximum principal stress, σ1, 
and the stress state, which originated the crack.

It is realized that the concrete between cracks resists ten-
sion stresses to a certain level, provides bonding to the 
reinforcement bars and contributes to the total stiffness 
of the structure.  This effect is known as tension stiffen-
ing and was incorporated into the model by modifying the 
stress-strain concrete curve.  An exponential curve sug-
gested by Hinton [13], as illustrated in figure 13 is used 
to simulate the softening effect of strains.  This curve is 
given by:
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where:
• E is the longitudinal modulus of elasticity;
• ε0 is the cracking strain;
• α is the softening parameter; and
•ε is the nominal tension strain of the cracked zone.
As a general rule, the first cracks in the concrete under 
tension are perpendicular to the direction of the high-
er principal stress, σ1.  The principal directions modify 
due to changes in loads or because of nonlinearities in 
the structure, producing relative displacements on the 
cracks’ rough edges and shear stresses on their planes.  
The values of these shear stresses depend on the local 
conditions of the cracks.  The main transference mecha-
nism of transversal forces is the aggregate interlock, 
with main variables being the aggregate’s type and 
granulometry.
Additionally, the dowel effect from the reinforcement 
that crosses the crack is also important to the force 
transference.  The main variables involved in this case 

are the diameter of the bars, the reinforcement ra-
tio, and the angle of the bars in relation to the crack’s 
plane.  Both mechanisms are controlled by crack open-
ing that, when increased, reduces the amount of shear 
transfer.
These mechanisms cannot be directly included into the 
smeared crack model and, in fixed crack models, they can 
be approximated by reducing the value of the concrete 
transversal modulus of elasticity, G, through a factor β, 
which varies from 0 to 1 [14].  Thus, the new value for the 
transversal modulus of elasticity, Gc, is given by:
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A constant value for β was tried; however, the most realis-
tically approach would be to correlate β with the concrete 
normal tension strain, εt.  Cervenka [14] presented the 
following formula for β, which is also used by Hinton [13], 
and utilized in this paper:

where k1 is taken equal to 0.075. 

5.4	 Constitutive	models	for	the	steel

In structural concrete structures, rebars fundamentally 
resist axial forces.  Therefore, only a uniaxial model to 
describe their behaviors is necessary.  The computation-
al model considers a bilinear stress-strain curve for the 
steel, i.e. a perfect elastoplastic behavior is considered 
and its longitudinal modulus of elasticity, Es, is a param-
eter of the analysis.  For the nontensioned reinforcing 
steel, an elastic-linear behavior is assumed until the 
yielding stress value, fy.  For the prestressing steel, an 
elastic-linear behavior is assumed until 90% of the value 
of its failure stress, fptk, is reached according to the CEB-
FIP Model Code 1990 [12].  Figures 14a and 14b illustrate 
the stress-strain diagrams adopted for reinforcing bars 
and prestressing steel, respectively.

5.5	 Viscoelastic	models	for	the	concrete		
	 and	the	steel

Time-dependent deformations in concrete are conven-
tionally separated into two types: creep and shrinkage.  
Creep is the continuous increase in strain that occurs 
during constant stresses (figure 15).  Shrinkage is a re-

duction in volume of the material in the absence of loads.  
For prestressed concrete structures the consideration of 
creep and shrinkage deformations is important because 
they present a series of undesirable effects such as in-
crease in deflections and prestressing losses. Their val-
ues are in the same order of magnitude as of those of 
instantaneous strains for typical stress levels.
The rheological model adopted to represent the time-
dependant behavior of concrete is a chain of Maxwell 
elements. The chain model is composed of an associa-
tion in parallel of springs in series with viscous dash-
pots, as shown in figure 16.  This model can be obtained 
from the basic visco-elastoplastic model if the equiva-
lent yield stresses are set equal to zero for the friction 
slider elements.
A linear behavior between creep strains and stresses 
was assumed, since the service stresses should be un-
der 0.4fcm, where fcm is the mean compressive strength 
of concrete), which guarantees this linearity (CEB-FIP 
Model Code 1990, [12]).
The determination of the parameters Eµ(t) and ηµ(t) of 
the rheological model, agreeing with the creep function 
given by the CEB-FIP Model Code 1990 [12], follows the 
procedure developed by Bazant and Wu [15], and was 
carried out in Machado [16].
The prestressing steel is subjected to a stress loss due 
to relaxation.  In order to represent this behavior, the 
same rheological model adopted for the creep effect in 
the concrete, as shown in figure 16, was used.  The same 
procedure used for the concrete to adjust its rheological 
parameter was used for the prestressing steel relaxation, 
as also carried out in Machado[16].

6 Prestressing

Prestressing systems can be classified into three types: 
pre-tension, post-tension, and external prestressing.  In 
order to address each of these types, three distinct math-
ematical models were implemented in the program devel-
oped and are discussed as follows.
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6.1	 Pre-tensioned	prestressing	systems

For the pre-tensioned prestressing system, displacement 
compatibility is admitted at the point that is shared by 
the steel and concrete since a perfect bonding hypothesis 
is assumed between both materials.  Another aspect is 
that both, concrete through creep and shrinkage effects, 
and the prestressing steel through relaxation, should al-
low long term strains, which are therefore automatically 
considered in the computational model and added to im-
mediate stress losses. 

6.2	 Post-tensioned	prestressing	systems

In this case the prestressing force is applied on an element 
of concrete already hardened and the bonding occurs af-
ter the injection of grout into the sheaths. The prestress-
ing force is transformed in equivalent nodal forces for the 
corresponding concrete element, as illustraded in figure 
17(a).  The axial compressive force, Fp, due to the pre-
stressing tendon is given by:

where σp0 is the initial prestressing stress (t = 0), at the 
first integration point (s = 0), and Ap is the cross sectional 
area of the prestressing steel.

The force, Fp, with components in the global Cartesian di-
rections x and y are:

The equivalent nodal forces, Fpxi and Fpyi, can be obtained 
from:

where Ni is the shape function for the ith node of the con-
crete element.
The prestressing stress loss due to friction can be calcu-
lated, according to Vasconcelos [23], by:

where:
• 0pσ  is the initial prestressing stress (t = 0), at any point 
along the tendon;
• piσ  is the prestressing stress applied at the initial end 
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of the tendon (s = 0);
• α∆  is the total geometric deflection or deviation angle;
• s is the distance between any point along the cable and 
its initial end;
• µ is the friction coefficient, which is given by:

The stress variation along tendons is verified at their inte-
gration points.  The tendon integration point located next 
to the point where the prestressing load is applied is as-
sumed to be at s = 0.  The parameter ∆α determines the 
angle variation between the integration point being con-
sidered along the reinforcement in relation to the angle of 
the point at s = 0 (see figure 17b).  For straight tendons, 
∆α = 0.
Similarly to the pre-tensioned system, progressive losses 
are automatically considered in the computational model.  
Increments in stress, total strain, elastic strain, and in 
plastic strain, as well as the equilibrium of the applied re-
sidual forces are calculated and added to the initial stress 
in the prestressing steel and applied to the external pre-
stressing load.

6.3	 External	prestressing	systems

In external prestressing systems the tendon is free to 
move along its profile in all sections except at the location 
of sections at the anchorage and at the deviators.  The be-
havior of the elements with unbonded prestressing subject 
to bending is complex. It is due to fact that the hypothesis 
of strain compatibility between concrete and steel is not 

applicable. Therefore the stress in the tendon depends on 
the deformation of the entire element, not only on one 
section.  A method that consists of placing the tendon in a 
dummy mesh was used in order to include the unbonded 
prestressing tendons in the model.  This dummy mesh is 
parallel to the actual mesh of elements of the structure 
and only the anchored end nodes and the nodes located 
at the deviators are common to one another.  Therefore 
there is no strain compatibility between the unbonded ten-
don and the concrete. For the dummy elements, a low 
longitudinal modulus of elasticity was adopted, avoiding 
singularities in the total stiffness matrix.
The absence of adherence only refers to the prestressing 
tendons while the reinforcing bars are always considered 
bonded to the concrete and therefore located in the actual 
mesh of elements.
Figueiras and Póvoas [18] and Moon and Burns [19] state 
that the main characteristic of externally prestressed 
structures subjected to bending is that the length variation 
in the unbonded tendons is equivalent to the total length 
variation of the structure.  Therefore there is compatibility 
of displacements between the tendons and the structure.  
This compatibility in displacements, not in strains, in each 
of the cross sections, allows a practically uniform stress 
distribution to occur along the unbonded tendon length.  
This stress distribution is function of the mean concrete 
strain along the profile of tendons [20].

7 Analysis of an externally prestressed  
 isostatic concrete beam

In this section, the results obtained from the computa-
tional model with values determined experimentally by 
Aparicio et al. [6] for one simply supported beam of 7.2 
m (24 ft) of effective length will be compared to seven 
segments and dry joints (figure 18).  The CP-190 RB pre-
stressing tendon was composed by four strands of 1.52 
cm in diameter (0.60 in.), and is illustrated in figure 18.  
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The initial prestressing stress was σp0 = 876 MPa (127 ksi).  
The steel modulus of elasticity was 195 GPa (28 ksi), and 
its tensile strength limit, fptk, was 1900 MPa (276 ksi).  The 
mean compressive strength of the concrete was 45 MPa 
(6527 psi).
For the finite element analysis, a 24 element mesh was used, 
with half of the beam discretized due to symmetry conditions 
in the geometry, properties, and loading, as shown in figure 
19.  In addition, the size and location of the elements were 
arranged according to the required thicknesses to model the 
cross section, i.e., 120 cm for the top flange, 20 cm for the 
web, and 70 cm for the bottom flange.

Dummy elements, which are parallel to the actual ones, 
and having in common only the nodes indicated in figure 
20, were used to include the unbonded prestressing ten-
dons into the model.

8 Computational model results

In this section, some graphical results obtained with the 
computational model are presented.  The deformed shapes 
of the beam for different loading levels are shown in figure 
21 where, for better visualization, a magnification of 20 x 
was applied.
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The concrete stress state, in kNcm-2, for several levels of 
applied load is shown in figure 22.
Figure 23a presents curves load (Q) vs. maximum dis-
placement and figure 23b presents curves load (Q) vs. 
prestressing steel stresses at the midspan cross section of 
the analyzed beam, according to the computational model 
and the experimental results.
 

9 Conclusions 

The objective of this paper is to present a model based 
on the finite element method for a study of the behavior 
of segmental concrete beams with external prestressing.  
One beam was analyzed and the results were compared 
to the experimental data available in the literature.  In 
the service condition, the beam behaved completely com-
pressed and presented a monolithical behavior.  This is 
illustrated in figure 21a and figure 22a.  However, when 
the ultimate state limit is considered, the compressive 
stresses decreased and tensile stresses appeared, caus-
ing the joints to open (figure 21b and 21g).  The first joint 
to open was that one at which the prestressing steel was 
tilted relatively to the longitudinal axis of the beam.  In 
the graphs of load versus prestressing steel stresses, it 
can be noticed that due to the joint openings a significant 
increase in the prestressing steel stresses occurs.  As the 
joints open; the prestressing steel carries the total force in 
the respective cross sections.  The maximum joint open-
ing, for the load of Q = 140 kN, was of 6 mm.
Comparing the results with the available experimental 
data, it can be verified that the computational simulation 
of the real behavior of segmentally precast concrete struc-
tures is satisfactory, as can be noticed by the agreement 
between the numerical and the experimental results pre-
sented in figure 23.  It can be concluded therefore that 
the finite element method is a valuable tool for the study 
of precast segmental concrete elements with external pre-
stressing.
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