Page 97 - vol5_n2

Basic HTML Version

227
IBRACON Structures and Materials Journal • 2012 • vol. 5 • nº 2
J. TANESI
|
M. G. da SILVA
|
V. GOMES
Requisitos gerais. Rio de Janeiro, 2008.
[02] TANESI, J. Contribuição ao desenvolvimento de
especificações por desempenho para concretos
com escória de alto-forno. Tese de doutorado.
Faculdade de Engenharia Civil, Arquitetura e
Urbanismo. Universidade Estadual de Campinas,
Campinas, Brazil 2010.
[03] TRANSPORTATION RESEARCH BOARD OF
THE NATIONAL ACADEMIES. Transportation
Research Circular E-C137. Glossary of Highway
Quality Assurance Terms, Washington DC, May 2009.
[04] TANESI, J.; SILVA, M.; GOMES, V.; CAMARINI,
G. From prescription to performance: international
trends on concrete specifications and the Brazilian
perspective. IBRACON Structures and Materials
Journal, Vol. 3, Number 4, IBRACON, Brazil, 2010.
[05] SILVA, G.; GOMES, V.; TANESI, J. Uma análise crítica
sobre a vida útil e a durabilidade na NBR 6118/2003.
In: Concreto e Construções. Numero 58, IBRACON,
Brazil, 2010.
[06] ASSOCIAÇÃO BRASILEIRA DE NORMAS
TÉCNICAS. NBR 6 118: Projeto e execução de obras
de concreto armado. Rio de Janeiro, 2003.
[07] EUROCODE EN 206-1 Concrete: Specification,
performance, production & conformity, 2000.
[08] CANADIAN STANDARDS ASSOCIATION. CSA
A23.1: Concrete Materials and Methods of Concrete
Construction Methods of Test and Standard Practices
for Concrete, Ontario, 2004.
[09] AMERICAN CONCRETE INSTITUTE (ACI).
ACI 318-08: Building Code Requirements for
Structural Concrete and Commentary, Michigan,
EUA, 2008.
[10] BICKLEY, J.; HOOTON, R. D; HOVER, K. (a)
Preparation of a Performance –Based Specification
for Cast-in-Place Concrete, RMC Research
Foundation, January, 2006.
[11] ASSOCIAÇÃO BRASILEIRA DE NORMAS
TÉCNICAS. NBR 12 655: Concreto de cimento
Portland – Preparo, controle e recebimento –
Procedimento. Rio de Janeiro, 2006.
[12] SIMONS, B. Concrete performance specifications:
New Mexico experience. Concrete International,
V 26 Issue 4, Michigan, April 2004.
[13] BAROGHEL-BOUNY, V. Durability Indicators:
A Basic Tool for Performance –Based Evaluation
and Prediction of Durability. In: Proceedings of
International Seminar on Durability and Lifetime
Evaluation of Concrete Structures”,
Higashi-Hiroshima, September, 2004.
[14] AMERICAN SOCIETY FOR TESTING AND
MATERIALS. ASTM C1556: Standard Test Method
for Determining the Apparent Chloride Diffusion
Coefficient of Cementitious Mixtures by Bulk Diffusion,
Pennsylvania, 2004.
[15] NORDEST. Nordest method NT Build 492: Chloride
migration coefficient from non-steady-state migration
experiments, Finland, 1999.
[16] TANG, L.; NILSSON, L.O. Rapid Determination of the
Chloride Diffusivity in Concrete by Applying an
Electrical Field. ACI Materials Journal, vol. 89, no. 1,
pp. 49-53, 1993.
[17] AMERICAN SOCIETY FOR TESTING AND
MATERIALS. ASTM C1202: Standard test method
for electrical indication of concrete’s ability to resist
chloride ion penetration, Pennsylvania, 2005.
[18] OZYILDIRIM, C.. Effects of Temperature on the
Development of Low Permeability in Concrete. VTRC
98-R14, Charlottesville, VA, 1998.
[19] FERREIRA, R. B. Influência das adições minerais nas
características do concreto de cobrimento e seu efeito
na corrosão de armadura induzida por cloretos.
Dissertação de mestrado. Universidade Federal de
Goiás. Setembro de 2003.
[20] CASCUDO, O. Inspeção e Diagnóstico de
Estrutura de concreto com problema de corrosão da
Armadura. In: Concreto, Pesquisa e Realizações. v2.
Ed. G. C. Isaia. p.1072-1108. São Paulo. Ibracon.
2005.
[21] COMITE EURO-INTERNATIONAL DU BETON (CEB).
Durable concrete structures - Design Guide. Great
Britain, 1989.
[22] MILLARD S.G.; GOWERS K.R . The influence of
surface layers upon measurement of concrete
resistivity. In: Malhotra VM ed(s). ACI SP126:
Durability of Concrete. Detroit, Michigan, CANMET/
ACI, 1991.
[23] ANDRADE, C.; ALONSO, C. Corrosion rate
monitoring in laboratory and on site. Construction
and Building Materials. v. 10, n. 5, p. 315-328, 1996.
[24] SANJUÁN, M.; ANDRADE, C.; CHEYREZY,
M. Concrete carbonation tests in natural and
accelerated conditions. Advances in Cement
Research, v. 15, n. 4, p. 171-180, 2003.
[25] BIER, T.; KROPP, J.; HILSDORF, H. The formation
of silica gel during carbonation of cementitious
systems containing slag cements. In: 3rd International
Conference on Fly Ash, Silica Fume, Slag and
Natural Pozzolans in Concrete, Proceedings,
Trondheim, ACI-SP-114, Vol.2, Detroit 1989.
[26] ASSOCIAÇÃO BRASILEIRA DE NORMAS
TÉCNICAS. NBR 8 490: Argamassas endurecidas
para alvenaria estrutural - Retração por secagem.
Rio de Janeiro, 1984.
[27] AMERICAN SOCIETY FOR TESTING AND
MATERIALS. ASTM C157 / C157M - 08 Standard
Test Method for Length Change of Hardened
Hydraulic-Cement Mortar and Concrete,
Pennsylvania, 2008.
[28] AMERICAN SOCIETY FOR TESTING AND
MATERIALS. ASTM C1581: Standard Test Method
for Determining Age at Cracking and Induced Tensile
Stress Characteristics of Mortar and Concrete under
Restrained Shrinkage, Pennsylvania, 2004.
[29] AMERICAN ASSOCIATION OF STATE HIGHWAY
AND TRANSPORTATION OFFICIALS. AASHTO
PP34-99. AASHTO Provisional Standards. AASHTO,
Washington, DC, April 2000, pp. 199-202.
[30] TANESI, J. A influência das fibras de polipropileno no
controle da fissuração por retração. Dissertação de
mestrado. Escola Politécnica da USP. Departamento
de Engenharia de Construção Civil, São Paulo,
Brazil 1999.
[31] ASSOCIAÇÃO BRASILEIRA DE NORMAS