143
IBRACON Structures and Materials Journal • 2012 • vol. 5 • nº 2
D.V. RIBEIRO
| J.A. LABRINCHA
|
M.R. MORELLI
chloride ions, and hence, the steady-state and nonsteady-
state diffusion coefficients;
n
The chloride migration tests of samples of concrete contain-
ing red mud showed a longer service life, reaching more than
double that of the reference samples (16.5 versus 35 years).
5. Acknowledgements
The authors wish to thank the FAPESB - Bahia Research Founda-
tion, PPGCEM/UFSCar - The Postgraduate Program in Materials
Science and Engineering at the Federal University of São Car-
los (Brazil) and the UA/DECV - Ceramics and Glass Engineering
Dept., University of Aveiro & CICECO (Portugal) - Project FCT-
PTDC/CTM/65243/ 2006, for their support of this research.
*This project did not have the financial support of Alcoa Brazil.
6. References
[01] ABRELPE – Associação Brasileira de Empresas de
Limpeza Pública e Resíduos Especiais. PANORAMA DOS
RESÍDUOS SÓLIDOS NO BRASIL 2009. Abrelpe, 2009.
210 p.
[02] IBRAM – Brazilian Mining Association. Bauxita. Available
in: <www.ibram.org.br/sites/1300/1382/00000033.pdf>.
Accessed in oct., 15th, 2010.
[03] ROSKILL REPORTS. The Economics of Bauxite & Alumina.
Available in: <www.roskill.co.uk/index.html>. Accessed in
nov., 20th, 2010.
[04] SINGH, M.; UPADHAYAY, S.N.; PRASAD, P.M. Preparation
of special cements from red mud. Waste Management, v. 16,
n. 8, p. 665-670, 1996.
[05] GLASSER, F.P. Fundamental aspects of cement
solidification and stabilization. Journal of Hazardous
Material, v. 52: p. 151-170, 1997.
[06] AMRITPHALE, S.S. et al. A novel process for making
radiopaque materials using bauxite—Red mud. Journal
of the European Ceramic Society. v. 27, n. 4,
p. 1945-1951, 2007.
[07] AMRITPHALE, S.S.; PATEL, M. Utilisation of red mud,
fly ash for manufacturing bricks with pyrophyllite. Silicates
Ind, v. 2, n. 3, p. 31-35, 1987.
[08] VINCENZO, M.S.; RENZ, C.; STEFANO, M.; GIOVANNI,
C. Bauxite red mud in the ceramic industry. Part 2:
production of clay based ceramics. Journal of the European
Ceramic, v. 20, n. 3, p. 245–252, 2000.
[09] YALCIN, N.; SEVNIC, V. Utilization of bauxite waste in
ceramic glazes. Ceramics International, v. 26, n. 5,
p. 485-493, 2000.
[10] ASOKAN, P.; SAXEAN, M.; ASOLEKAR, S.R. Coal
combustion residues-environmental implications and
recycling potentials. Resources, Conservation and
Recycling, v. 43, n. 3, p. 239-262, 2005.
[11] TSAKIRIDIS, P.E.; AGATZINI-LEONARDOU, S.;
OUSTADAKIS, P. Red mud addition in the raw meal for
the production of Portland cement clinker. Journal of
Hazardous Material, v. 116, n. 1-2, p. 103-110, 2004.
[12] SINGH, M.; UPADHAYAY, S.N.; PRASAD, P.M.
Preparation of iron rich cement from red mud. Cement
and Concrete Research, v. 27, n. 7, p. 1037-1046, 1997.
[13] CABEZA, et al. Red mud as a corrosion inhibitor for
reinforced concrete. The Journal of Corrosion Science and
Engineering, v. 6, n. 32, p. 1-4, 2003.
[14] GORDON, J.N.; PINNOCK, W.R.; MOORE, M.M. A
preliminary investigation of strength development in
Jamaican red mud Composites. Cement and Concrete
Composites, v. 18, n. 6, p. 371-379, 1996.
[15] ANDRADE, C. Calculation of diffusion coefficients in
concrete from ionic migration measurements. Cement
and Concrete Research, v.23, n. 3, p. 724-742, 1993.
[16] CASTELLOTE, M.; ANDRADE, C.; ALONSO, C.
Measurement of the steady and non-steady-state chloride
diffusion coefficients in a migration test by means of
monitoring the conductivity in the anolyte chamber.
Comparison with natural diffusion tests. Cement and
Concrete Research, v.31, n. 10, p. 1411–1420, 2001.
[17] TONG, L.; GJØRV, O.E. Chloride diffusivity based on
migration testing. Cement and Concrete Research. v.31,
n. 7, p. 973-982, 2001.
[18] SANTOS, L. Avaliação da resistividade elétrica do concreto
como parâmetro para a previsão da iniciação da corrosão
induzida por cloretos em estruturas de concreto. 161p.
Dissertação (Mestrado em estruturas), Departamento de
Estruturas, Universidade de Brasília, Brasília, 2006.
[19] RIBEIRO, D.V.; LABRINCHA, J.A.; MORELLI, M.R. Use
of Red Mud as Addition for Portland Cement Mortars.
Journal of Materials Science and Engineering, v. 4, n. 8,
p. 1-9, 2010.
[20] SONG, G. Equivalent circuit model for SAC electrochemical
impedance spectroscopy of concrete. Cement and Concrete
Research, v. 30, n.11, p. 1723-1730, 2000.
[21] AÏTCIN, P.C. The durability characteristics of high
performance concrete: a review. Cement and Concrete
Composites, v. 25, n. 4-5, p. 409-420, 2003.
[22] CHVEDOV, D.; OSTAP, S.; LE, T. Surface properties of red
mud particles from potentiometric titration. Colloids Surface
A, v. 182, n. 1, p. 131-141, 2001.
[23] LOPEZ, E.; SOTO, B.; ARIAS, M. Adsorbent properties
Figure 10 – Correlation between
estimated service life and red mud content
in concrete, estimated from a chloride
penetration depth of 4 cm depth in the structure