Novos Produtos com maior robustez operacional para concretos de classe S 100

Belo Horizonte, 13-outubro-16

W. R. Grace & Co. ("New Grace")

Catalysts Technologies and Materials Technologies

GCP Applied Technologies

Construction Products and Darex Packaging

A marca que você conhece e confia tem um novo nome...

- ✓ Líder mundial em catalisadores de processo e sílicas especiais;
- ✓ Produtos e tecnologias focada em vendas e serviços técnicos especializados.
- ✓ Processos complexos de fabricação e operação com alto investimento de capital.
- ✓ Líder mundial em produtos quimicos para construção, selantes e revestimneto para embalagens.
- ✓ Marketing e vendas focada em serviços especializados;
- ✓ Processo mais simples de fabricação e operação com menos investimento de capital.

Três segmentos líderes

- Specialty Construction Chemicals (SCC)
- Specialty Building Materials (SBM)
- Darex Packaging Technologies (Darex)

Porcentagem de vendas por região América Latina 15% América do Norte 34% Europa/Oriente Médio/África 27% Pacífico Asiático 24%

Novos Produtos com maior robustez operacional para concretos de classe \$ 100

Agenda

- Níveis de trabalhabilidade;
- O que diz a NBR 8953 em relação a trabalhabilidade;
- Vantagens operacionais em utilizar concretos mais trabalháveis;
- Tipos de aditivos versus trabalhabilidade;
- Novos linha de produto: Mira Flow
- Custo beneficio entre Mira Flow versus aditivos plastificantes;
- Robustez técnica operacional dos aditivos Mira Flow;
- Casos de utilização.

Níveis de trabalhabilidade

Muito Baixa Baixa Moderada Alta

O que diz a NBR 8953/09 em relação a trabalhabilidade;

Tabela 4 - Classes de consistência

Classe	Abatimento mm	Aplicações típicas							
S10	10 ≤ A < 50	Concreto extrusado, vibroprensado ou centrifugado							
S50	50 ≤ A < 100	Alguns tipos de pavimentos, de elementos de fundações e de elementos pré-moldados ou pré-fabricados							
S100	100 ≤ A < 160	Elementos estruturais correntes como lajes, vigas, pilares, tirantes, pisos, com lançamento convencional do concreto							
S160	160 ≤ A < 220	Elementos estruturais correntes como lajes, vigas, pilares, tirantes, pisos, paredes diafragma, com concreto lançado por bombeamento, estacas escavadas lançadas por meio de caçambas.							
S220	> 220	Estruturas e elementos estruturais esbeltos ou com alta densidade de armaduras com concreto lançado por bombeamento, lajes de grandes dimensões, elementos pré-moldados ou pré-fabricados de concreto, estacas escavadas lançadas por meio de caçambas.							

	Brasil	Outros Paises	_
Lançamento convencional	5 a 6	5 a 6	± 14 cm
Lancamento bombeável	8 a 10	8 a 10	± 23 cm
	(cm)	(polegadas)	

Vantagens operacionais em utilizar concretos mais trabalháveis;

- √ Maior facilidade e rapidez na aplicação;
- ✓ Maior produtividade (mais ciclos de viagens com mesma quantidade de caminhões betoneiras);
- ✓ Redução das falhas de concretagem;
- √ Maior durabilidade dos elementos estruturais;
- ✓ Diminuição do desvio padrão da central (menor variabilidade de resultados) etc.

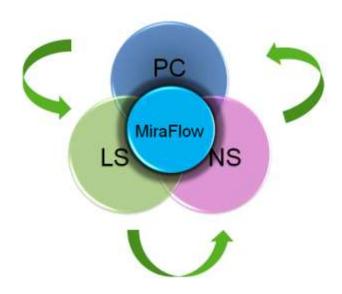
Tipos de aditivos versus trabalhabilidade;

Plastificante – P

(~1960) - LG

Superplastificante

SP 1 (~1960) NF


Superplastificante

SP 2 (~1998) PC

Polifuncionais - PF (2000)

MiraFlow (2013)

Novos linha de produto: Mira Flow

Características principais:

- ✓ Produtos base PC ou PC + Ligno;
- ✓ Adicionado na central (baixa perda de abatimento);
- ✓ Auto poder de redução de água (+- 10 a 20 litros em relação ao Plastificante);
- ✓ Manutenção de slump ajustada de acordo com a necessidade do cliente;
- √ Ótimas resistências iniciais e finais (independente da manutenção prolongada);
- ✓ Ótimo custo beneficio para consumos > 250 kg e slump > 140 mm.

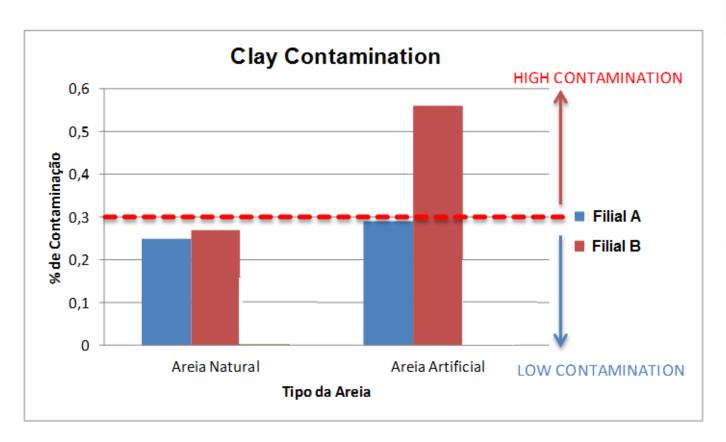
Custo beneficio entre Mid Range versus aditivos plastificantes;

Materiais	Custos dos Materiais (R\$/kg)	Traço 1 (kg/m³)	Traço 2 (kg/m³)
Cimento	0,3	317	292
Areia Natural	0,045	413	435
Areia Artificial	0,03	413	435
Brita O	0,03	203	206
Brita 1	0,03	810	825
Agua	-	190	175
Aditivo Plastificante	2,30	2,53	-
Aditivo Mira Flow	5,00	-	2,04
Relação A:C	-	0,60	0,60
Teor de Argamassa (%)	-	53,0	53,0
Custo do concreto: (R\$/m³)	-	162,19	161,26

Robustez técnica operacional dos aditivos Mira Flow

Filial A

	Traço	Aditivo	Dose	Água	Abatimento (mm)					Relação	Cimento		Resistência Compressão (MPa)		
		Auitivo	(% massa)	(L/m³)	T 0 min	T 60 min	A	FINAL	(%)	a/c final	(Kg/m³)	Tipo	1	7	28
	1	Plastificante	0,8	190	105	80	25	105	1,0	0,664	287	CPII E-40	7,9	30,0	36,9
	2	Mira Flow	0,8	163	110	105	5	105	1,0	0,568	287	CPII E-40	14,2	41,3	47,3


Filial B

Traço	Aditivo	Dose	Água	Abatimento (mm)					Relação	Cimento		Resistência Compressão (MPa)		
Traço	Traço Aditivo	(% massa)	(L/m³)	T 0 min	T 60 min	A	FINAL	(%)	a/c final	(Kg/m³)	Tipo	1	7	28
1	Plastificante	0,8	203	100	75	25	105	1,0	0,660	308	CPII E-40	10,0	28,2	34,9
2	Mira Flow	0,8	196	110	35	75	120	1,0	0,635	308	CPII E-40	7,6	28,4	33,9

Robustez técnica operacional dos aditivos Mira Flow

- ✓ Determinação da contaminação de argila nas areias (montimorrilhonita)
- ✓ Contaminação passante na peneira # 200, presente em qualquer tipo de areia

Novos linha de produto: Mira Flow

Filial B

_	Traço	Aditivo	Dose	Água		Abatimer	nto (mm)		Ar	Relação	Cimento		Resistência Compressão (MPa)		
•	ιταçυ	Aditivo	(% massa)	(L/m³)	T 0 min	T 60 min	A	FINAL	(%)	a/c final	(Kg/m³)	Tipo	1	7	28
	1	Plastificante	0,8	203	100	75	25	105	1,0	0,660	308	CPII E-40	10,0	28,2	34,9
	2	Mira Flow	0,8	196	110	35	75	120	1,0	0,635	308	CPII E-40	7,6	28,4	33,9

Filial B – Produto robusto quanto a contaminação de argila

	Aditivo	Dose	Água	Abatimento (mm)					Relação	Cimento		Resistência Compressão (MPa)		
		(% massa)	(L/m³)	T 0 min	T 60 min	A	FINAL	(%)	a/c final	(Kg/m³)	Tipo	1	7	28
	Mira Flow	1,2	175	120	105	15	105	1,2	0,568	308	CPII E-40	6,2	39,2	48,5
	Mira Flow CM	0,8	177	115	110	5	110	1,5	0,575	308	CPII E-40	11,0	38,7	47,2

Projeto Morar Feliz - RJ

Paredes de Concreto

fc 18 h > 12 MPa

Slump > 230 mm

Linha 4 Metro - RJ

Concreto para Fundação

fck 30 MPa - Tubulão

Slump > 180 mm

Prosub - RJ

fck > 30 MPa

Slump > 160 mm

Ponte de Laguna - SC

Concreto para Fundação

fck > 30 MPa -

Tubulão

Pilares

Aduelas

Mastro

Slump > 180 mm

Rogério Venâncio | Technical Service Manager — Latin America

GCP Applied Technologies

Av. Paraná, 4690 | Sorocaba São Paulo Brasil Cep: 18105-000 | M +55 97320-4137 | rogerio.venancio@gcpat.com

Eliron Maia Souto Júnior Eliron.mais@gcpat.com