COMPUTATIONAL MODELING OF CRACKING OF CONCRETE: PAST, PRESENT AND FUTURE TRENDS

J. Oliver

International Center for Numerical Methods in Engineering (CIMNE), Technical University of Catalonia (UPC/BarcelonaTech), Spain

Contributors:

A. Huespe (CIMEC/UNL, Santa Fe, Argentina)
M. Cervera (CIMNE/UPC, Barcelona, Spain)
D.G. Pulido (UPM/CEU, Madrid, Spain)
O. Manzoli (UNESP, Bauru, Brazil)
E.W.V. Chaves (UCLM, Ciudad Real, Spain)
I. Dias (LNEC, Lisboa, Portugal
D.F. Mora (IMDEA, Madrid, Spain)

- S. Oller (UPC/CIMNE, Barcelona, Spain)
- R. Faria (FEUP, Porto, Portugal)
- S. Blanco (UPM, Madrid, Spain)
- E. Samaniego (Universidad de Cuenca, Ecuador),
- D. Linero (U.N. Bogotá, Colombia)
- M. Caicedo (CIMNE/UPC, Barcelona, Spain)
- E. Roubin (CIMNE, Barcelona, Spain),

MOTIVATION

(htttp://en.wikipedia.org/wiki/Reinforced_concrete)

..... on a human time-scale, small usages of concrete go back for thousands of years.... the Romans used concrete extensively from 300 BC to 476 AD,.....

...the use of reinforced concrete is usually dated to 1848 when Jean-Luis Lambot became the first to use it. Joseph Monier, a French gardener, patented a design for reinforced garden tubs in 1868, and later patented reinforced concrete beam and posts for railway and road guardrails....

.....as of 2005 over six billion tons of concrete are made each year, amounting to the equivalent of one ton for every person on Earth,.....

COMPUTATIONAL MODELING OF CONCRETE ... still a challenge in Computational Mechanics ?

- Composite material (complex component interaction)
- Failure dominated by (non-linear) material instability (complex mechanics)
- Unsymmetrical (tension-compression) behavior
- Multiple cracks (computational cost, robustness)
- Time-dependent effects (creep, shrinkage, aging .. etc..)

OUTLINE

- I. CONCRETE: A COMPLEX MATERIAL
- II. NUMERICAL SIMULATION OF CRACKING OF CONCRETE
- III. MECHANICAL APPROACHES TO CONCRETE MODELING
- IV. ABOUT THE FUTURE

CONCRETE: A COMPLEX MATERIAL

Unsymmetrical (tension/compression) material

 \Box Low tensile strength \rightarrow **CRACKING**

CONCRETE: A COMPLEX MATERIAL

Discontinuous displacement field (strong discontinuities)

- Continuum mechanics fails !!!!
- Crack path is not known in advance (crack onset and propagation)

CONCRETE: A COMPLEX MATERIAL

Inhomogeneous material at multiple scales

Multiscale material mechanics, Willam K. (2000).

Reinforced concrete (mortar + aggregates+ rebars)

Fiber-reinforced concrete (mortar + fibers)

- Plain concrete (mortar + aggregates)
 - C-S-H

Cement Paste

NUMERICAL MODELING OF CRACKING OF CONCRETE

Computational approaches to concrete fracture

Crack path modeling strategies

COMPUTATIONAL APPROACHES TO CONCRETE FRACTURE

1. SMEARED CRACK APPROACH Rashid (1968), Rots (1988)

Generation of the crack geometry

 $\Delta \sigma = [D^{co} - D^{co} N [D^{cr} + N^T D^{co} N]^{-1} N^T D^{co}] \Delta \varepsilon$

COMPUTATIONAL APPROACHES TO CONCRETE FRACTURE

1. SMEARED CRACK APPROACH (cont.)

- Standard finite elements are used
- Results dependent om the mesh bias (lack of mesh-objectivity)
- Good results for pre-peak responses and heavily reinforced concrete structures

Industrialized !!!! (used in commercial codes)

COMPUTATIONAL APPROACHES TO CONCRETE FRACTURE

2. DISCRETE CRACK CRACK APPROACH

Crack: individual jump in the displacement field (Strong discontinuity)

- 1. COHESIVE FRACTURE MECHANICS (Hillerborg 1976)
- de-cohesive traction-separation law

- 2. CONTINUUM-STRONG-DISCONTINUITY APPROACH (CSDA) (O. Manzoli, 1988)
 - stress-strain softening law

NUMERICAL MODELING OF CRACKING OF CONCRETE

Computational approaches to concrete fracture

□ Crack path modeling strategies

CRACK PATH MODELING STRATEGIES

- **1. REMESHING STRATEGIES (linear fracture)**
 - Crack tip remeshing (Wawrzynek and Ingraffea 1987)

Souiyah Miloud et. al. , Int. J. Mat. Eng. 2012

CRACK PATH MODELING STRATEGIES

2- FIXED MESH STRATEGIES (2D-3D)

Inter-elemental crack-capturing

Cohesive interface elements
 (M.Ortiz/A.Pandolfi 1999, O. Manzoli 2012)

Extra-elemental crack-capturing

- Non-local stress-strain approaches
- Gradient-based approaches
- Phase-field-based models

Intra-elemental crack-capturing

- E-FEM techniques
 (Simo, Oliver, Armero 1993)
- X-FEM techniques
 (N. Möes, J. Dolbow, T. Belytschko 1998)

MECHANICAL APPROACHES TO CONCRETE CRACKING

□ Fiber/filament beam models

Concrete as a composite material

Micro-structure endowed material

Computational homogenization

FIBER/FILAMENT BEAM MODELS

• Scordelis and Chan 1987, Marí 1987, Marí and Bairán 2014

FIBER/FILAMENT BEAM MODELS

Advantages:

- Good balance simplicity/accuracy
- Complex non-linear modelling at low computational cost
- Suitable for framed structures

N-M interaction. V decoupled

$$\begin{pmatrix} \mathbf{N} \\ \mathbf{M}_{\mathbf{y}} \\ \mathbf{V}_{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \mathbf{D}_{11}\mathbf{A} & \mathbf{D}_{11}\mathbf{S}_{\mathbf{y}} & \mathbf{0} \\ \mathbf{D}_{11}\mathbf{S}_{\mathbf{y}} & \mathbf{D}_{11}\mathbf{I}_{\mathbf{y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{GA}_{\mathbf{z}}^{*} \end{pmatrix} \begin{pmatrix} \boldsymbol{\varepsilon}_{0} \\ \boldsymbol{\phi}_{y} \\ \boldsymbol{\gamma}_{xz} \end{pmatrix}$$

^{S^C}D. Ferreira, J. Bairán & A. Marí (2014)

FIBER/FILAMENT BEAM MODELS

MECHANICAL APPROACHES TO CONCRETE CRACKING

- □ Fiber/filament beam models
- □ Concrete as a composite material
- □ Micro-structure endowed material
- Computational multiscale modeling of concrete

□ Mixture theory (Hill, 1963)

1. PHENOMENOLOGICAL MODELING OF INDIVIDUAL CONSTITUENTS

- Mixture theory (cont.)
- 2. LINEAR HOMOGENIZATION (rule of mixtures)

CRACK SPACING

d (mm)

CRACK COALESCENCE Double reinforced panel in shear

Experimental result (Collins et al. 1985).

CRACK PATTERN EVOLUTION

bending + shear beams (Leonard and Walter, 1965)

CRACK PATTERN EVOLUTION & ACTION-RESPONSE CURVE

CRACK PATTERN EVOLUTION & ACTION-RESPONSE CURVE

CRACK PATTERN EVOLUTION & ACTION-RESPONSE CURVE

CRACK PATTERN EVOLUTION & ACTION-RESPONSE CURVE

CRACK PATTERN EVOLUTION & ACTION-RESPONSE CURVE

CRACK PATTERN EVOLUTION & ACTION-RESPONSE CURVE

ASPECT RATIO EFFECTS ON CRACK PATTERN

MECHANICAL APPROACHES TO CONCRETE CRACKING

- Fiber/filament beam models
- Concrete as a composite material
- □ Micro-structure endowed material
- Computational multiscale modeling of concrete

MACRO SCALE

MESO SCALE

Ph.D. Thesis: D.F. Mora 2012

MICROSTRUCTURE
$$\rightarrow \beta(\mathbf{x}, t) = \{\beta^{(\theta_i)}\} \quad \mathbf{x} \in \Omega$$

(*i*) \rightarrow i-oriented fiber bundle ($i \in \{1, ..., n_{bundle}\}$

Morphological descriptor β= oriented-fiber-bundle slips

$$\begin{aligned} \tau^{f} & -\frac{A^{f}}{\Pi^{f}} \frac{\partial \sigma^{f}}{\partial x'} = 0 \ \forall \mathbf{x} \in \Omega \rightarrow \\ & \text{Capriz balance} \\ & \text{(fiber axial equilibrium)} \end{aligned}$$

$$\sigma^{f} & = \Sigma^{f}(\mathbf{u}, \beta) \\ \tau^{f} & = T^{f}(\beta) \end{aligned}$$

$$\Rightarrow \text{Fiber constitutive model}$$

FIBER REINFORCEMENT EFFECTS

Dog-bone shaped specimen with randomly oriented fibers (Suwannakarn. 2009)

CRACK BRIDGING EFFECTS

MECHANICAL APPROACHES TO CONCRETE CRACKING

- □ Fiber/filament beam models
- □ Concrete as a composite material
- Micro-structure endowed material
- Computational multiscale modeling of concrete

• Stress-strain law obtained from low-level physics

TWO-SCALE FOUR POINT BENDING TEST OF A NOTCHED BEAM

Ph. D. Thesis: Manuel Caicedo 2015

TWO-SCALE FOUR POINT BENDING TEST

TWO-SCALE FOUR POINT BENDING TEST

Structural response sensitivity to the lower scale failure mechanism

Extra-granular failure Intra-granular failure (hard aggregates)

(soft aggregates)

Prescribed horizontal failure mode

Prescribed vertical failure mode

TWO-SCALE FOUR POINT BENDING TEST

Structural response sensitivity to the lower scale failure mechanism

STRUCTURAL COLLAPSE AND CRACKING OF CONCRETE

STRUCTURAL COLLAPSE MODELING OF CONCRETE

"Scalere" dam, Italy (1911-1912)

Load-factor vs. crest displacement

STRUCTURAL COLLAPSE MODELING OF CONCRETE

"Scalere" dam, Italy (1911-1912)

Load-factor vs. crest displacement

STRUCTURAL COLLAPSE MODELING OF CONCRETE Alqueva dam,(Portugal)

Experimental mock-up (LNEC, Portugal)

COMPUTATIONAL MATERIAL DESIGN Motivation

Meta-materials (beyond-materials): materials engineered to have properties that have not yet been found in nature

Negative refractive index (NASA Glenn Research) On-demand buckling (shape-memory materials) Negative Poisson-ratio (Giusti 2009)

Reinforced concrete: engineered meta-material !!! (the first one?)

COMPUTATIONAL MATERIAL DESIGN COMPDESMAT project

European Research Council

Advanced tools for computational design of engineering materials

ERC - Advanced Grant 2012

COMPDESMAT Advanced tools for computational design of engineering materials

COMPUTATIONAL MATERIAL DESIGN COMPDESMAT project

POLYCHRISTAL MATERIALS

TRASVERSAL FIBERS

Material design in terms of:

- arrangement
- morphology
- topology (in structural materials)

 GOAL: Minimize de structural compliance (maximize stiffness) by optimal design of the structural topology with a given material volume

$$\begin{split} \chi(\boldsymbol{x}) : \mathcal{D} &\to \{0, 1\\ \Omega := \{ \boldsymbol{x} \in \mathcal{D} ; \ \chi(\boldsymbol{x}) = 1 \}\\ \text{minimize} & \underbrace{\int_{\mathcal{D}} \frac{1}{2} \boldsymbol{\sigma} \cdot \mathbb{C}^{-1}(\chi_{\mu}) \cdot \boldsymbol{\sigma} \ d\mathcal{D}}_{Structural \ compliance \ (\mathcal{C})} \\ \forall \boldsymbol{x} \in \mathcal{D} & \text{s.t.} \left| \Omega(\chi) \right| = V \end{split}$$

Volume reduction

 \rightarrow to 15 %

 GOAL: Minimize de structural compliance (maximize stiffness) by optimal design of the material topology for a given material volume reduction

• *Material* volume reduction \rightarrow to 60%

$$\begin{split} \chi_{\mu}(\boldsymbol{x},\boldsymbol{y}) &: \mathcal{D} \times \mathcal{D}_{\mu} \to \{0,1\} \\ \Omega_{\mu} &:= \{\boldsymbol{y} \in \mathcal{D}_{\mu} ; \ \chi_{\mu}(\boldsymbol{x},\boldsymbol{y}) = 1\} \\ \text{minimize} & \underbrace{\int_{\mathcal{D}} \frac{1}{2} \boldsymbol{\sigma} : \mathbb{C}^{\text{hom}^{-1}}(\chi_{\mu}) : \boldsymbol{\sigma} \ d\mathcal{D}}_{Structural \ compliance \ (\mathcal{C})} \\ \forall \boldsymbol{x} \in \mathcal{D} \\ \text{s.t.} \left| \Omega_{\mu}(\chi_{\mu}) \right| = V_{\mu} \end{split}$$

• GOAL: Minimize de structural compliance (maximize stiffness) by optimal design of the material topology for a given material volume reduction

• *Material* volume reduction \rightarrow to 60 %

$$\begin{split} \chi_{\mu}(\boldsymbol{x},\boldsymbol{y}) &: \mathcal{D} \times \mathcal{D}_{\mu} \to \{0,1\} \\ \Omega_{\mu} &:= \{\boldsymbol{y} \in \mathcal{D}_{\mu} ; \ \chi_{\mu}(\boldsymbol{x},\boldsymbol{y}) = 1\} \\ \text{minimize} \\ \chi_{\mu,\boldsymbol{x}}(\boldsymbol{y}) \\ \forall \boldsymbol{x} \in \mathcal{D} \\ \text{s.t.} \left| \Omega_{\mu}(\chi_{\mu}) \right| = V_{\mu} \end{split}$$

• GOAL: Minimize de structural compliance (maximize stiffness) by optimal design of both the structural and material topology for a given total mass reduction.

- *Structural* volume reduction (macro scale) \rightarrow to 60%
- *Material* volume reduction (micro scale) \rightarrow to 60 %
- *Total* mass reduction \rightarrow to 36%

The futur ...

... a new generation of cementitious metamaterials to be designed through computational material design?

The futur ...

... a new generation of cementitious metamaterials to be designed through computational material design?

A CHALLENGE FOR THE FUTURE !!!

Support from the European Research Council (ERC) through Advanced Grant ADG_20120216:

ADVANCED TOOLS FOR COMPUTATIONAL DESIGN OF ENGINEERING MATERIALS (COMP-DES-MAT)

is gratefully acknowledged.

Open-source codes and scientific production of this research are available at:

http://cimne.com/compdesmat

European Research Council

Established by the European Commission

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement ADG_20120216

Manufacturability issues CONTINUUM vs. DISCRETE DESIGN

• Component-based manufacturing

Cantilever beam.

Concurrent (macro/micro-scale) topological design.

• Discrete (by-component) design

Cantilever beam.

Concurrent topological design

Discrete (by-component) design

