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MOTIVATION 
(htttp://en.wikipedia.org/wiki/Reinforced_concrete) 
 
….. on a human time-scale, small usages of concrete go 

back for thousands of years…. the Romans used concrete 
extensively from 300 BC to 476 AD,….. 
…the use of reinforced concrete is usually dated to 1848 

when Jean-Luis Lambot became the first to use it. Joseph 
Monier, a French gardener, patented a design for 
reinforced garden tubs in 1868, and later patented 
reinforced concrete beam and posts for railway and road  
guardrails….  
…..as of 2005 over six billion tons of concrete are made 

each year, amounting to the equivalent of one ton for 
every person on Earth,….. 
 

http://en.wikipedia.org/wiki/Image:31-January-2004-Taipei101-Complete.jpg


…  still a challenge in Computational Mechanics ? 

   Composite material (complex component 
interaction) 

 Failure dominated by (non-linear) material 
instability (complex mechanics) 

 Unsymmetrical (tension-compression) behavior 
 Multiple cracks (computational cost, 

robustness) 
 Time-dependent effects (creep, shrinkage, aging 

.. etc..) 

COMPUTATIONAL MODELING OF CONCRETE  



I.  CONCRETE: A COMPLEX MATERIAL 

II.  NUMERICAL SIMULATION OF CRACKING OF 

  CONCRETE 

III. MECHANICAL APPROACHES TO CONCRETE    
MODELING 

IV.  ABOUT THE FUTURE 

OUTLINE 
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  Unsymmetrical (tension/compression) material 

  Low tensile strength   → CRACKING 

CONCRETE: A COMPLEX MATERIAL 
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  Discontinuous displacement field (strong discontinuities) 

  Continuum mechanics fails !!!! 
  Crack path is not known in advance (crack onset and propagation) 

CONCRETE: A COMPLEX MATERIAL 



- Plain concrete (mortar + aggregates) 

  Inhomogeneous material at 
 multiple scales 

- Fiber-reinforced concrete (mortar + 
fibers)  

- Reinforced concrete (mortar + 
aggregates+ rebars) 

Multiscale material 
mechanics, Willam K. (2000).  
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CONCRETE: A COMPLEX MATERIAL 



  NUMERICAL MODELING OF CRACKING 

 OF CONCRETE 

   

 Computational approaches to concrete 
fracture 

 Crack path modeling strategies 
strategies 

 



COMPUTATIONAL APPROACHES TO CONCRETE FRACTURE 
 Rashid (1968), Rots  (1988)  

• Additive decomposition of strains 
 

1. SMEARED CRACK APPROACH 

 “Fuzzy“ description of the crack geometry 



 Standard finite elements are used  
 Results dependent om the mesh bias (lack of mesh-objectivity) 
 Good results for pre-peak responses and heavily reinforced concrete 

structures 

  Industrialized   !!!! (used in commercial codes) 

1. SMEARED CRACK APPROACH (cont.) 

COMPUTATIONAL APPROACHES TO CONCRETE FRACTURE 



1. COHESIVE FRACTURE MECHANICS 
 (Hillerborg 1976) 
 de-cohesive traction-separation law 

 Crack: individual jump in the displacement field (Strong discontinuity) 
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2. CONTINUUM-STRONG-DISCONTINUITY 
APPROACH (CSDA) (O. Manzoli, 1988) 
 stress-strain softening law  
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  NUMERICAL MODELING OF CRACKING 

 OF CONCRETE 

   

 Computational approaches to concrete 
fracture 

 Crack path modeling strategies 
strategies 

 



1. REMESHING STRATEGIES  (linear fracture) 
• Crack tip remeshing  (Wawrzynek and Ingraffea 1987) 

CRACK PATH MODELING STRATEGIES 

Souiyah Miloud  et. al. ,Int. J. Mat. Eng.  2012 



 
2- FIXED MESH STRATEGIES (2D-3D) 
 
 Inter-elemental  crack-capturing  

o Cohesive interface elements 
            (M.Ortiz/A.Pandolfi 1999, O. Manzoli 2012)  

 
 

 Extra-elemental crack-capturing  
o  Non-local stress-strain approaches 
o Gradient-based approaches 
o Phase-field-based models 

 
 

 Intra-elemental crack-capturing  
o E-FEM techniques 
       (Simo, Oliver, Armero 1993 ) 
o X-FEM techniques 
        (N. Möes, J. Dolbow, T. Belytschko 1998) 

 
 

CRACK PATH MODELING STRATEGIES 



 MECHANICAL APPROACHES TO CONCRETE 

  CRACKING  

 

 Fiber/filament beam models 

 Concrete as a composite material 

 Micro-structure endowed material  

 Computational homogenization                

 



• Scordelis and Chan 1987,  Marí 1987, Marí and Bairán 2014  

FIBER/FILAMENT BEAM MODELS 
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Fibre stress state

Advantages: 
• Good balance simplicity/accuracy 
• Complex non-linear modelling at low computational cost 
• Suitable for framed structures 

D. Ferreira, J. Bairán & A. Marí (2014) 

FIBER/FILAMENT BEAM MODELS 
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 MECHANICAL APPROACHES TO CONCRETE 

  CRACKING 

 Fiber/filament beam models 

 Concrete as a composite material 

 Micro-structure endowed material  

 Computational multiscale modeling of concrete                

 



Multiscale material 
mechanics, Willam K. (2000).  
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REINFORCED CONCRETE AS A COMPOSITE MATERIAL 
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 Ph. D. Thesis:  D.L. Linero  2006  
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Mixture  
theory 

1) Matrix constituent (concrete) 2) Fiber constituent (rebars) 

3) Sliding fiber constituent 
   (rebar+bond/slip effects) 
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1. PHENOMENOLOGICAL MODELING OF INDIVIDUAL CONSTITUENTS 

 Mixture theory (Hill, 1963) 
REINFORCED CONCRETE AS A COMPOSITE MATERIAL 



2. LINEAR HOMOGENIZATION (rule of mixtures) 
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 Mixture theory (cont.) 
REINFORCED CONCRETE AS A COMPOSITE MATERIAL 
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Experimental result  
(Collins et al. 1985). 
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CRACK COALESCENCE 
Double reinforced panel in shear 
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CRACK PATTERN EVOLUTION 
bending + shear beams (Leonard and Walter, 1965) 
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ASPECT RATIO EFFECTS ON CRACK PATTERN 

a/d = 1.0 

a/d = 5.0 

a/d = 2.0 

a/d = 3.0 

REINFORCED CONCRETE AS A COMPOSITE MATERIAL 



 MECHANICAL APPROACHES TO CONCRETE 

  CRACKING 

 Fiber/filament beam models 

 Concrete as a composite material 

 Micro-structure endowed material  

 Computational multiscale modeling of concrete                

 



Complex bodies theory (Capriz 1989, 
Mariano 2005) 

 MACRO SCALE  

 MESO SCALE    Ph.D. Thesis:   D.F. Mora  2012  

FIBER-REINFORCED CONCRETE 
(AS A CONTINUUM WITH MICROSTRUCTURE) 



Morphological descriptor 
 β= oriented-fiber-bundle slips   

FIBER-REINFORCED CONCRETE 
(AS A CONTINUUM WITH MICROSTRUCTURE) 



Load vs. displacement curves 

Geometry, experimental setup and F.E. mesh 

FIBER REINFORCEMENT  EFFECTS 
Dog-bone shaped specimen with randomly oriented fibers (Suwannakarn. 2009)  

FIBER-REINFORCED CONCRETE 
(AS A CONTINUUM WITH MICROSTRUCTURE) 



CRACK BRIDGING EFFECTS 

Damage evolution 

Numerical crack pattern  

Stress-strain equivalent law 

FIBER-REINFORCED CONCRETE 
(AS A CONTINUUM WITH MICROSTRUCTURE) 



 MECHANICAL APPROACHES TO CONCRETE 

  CRACKING 

 Fiber/filament beam models 

 Concrete as a composite material 

 Micro-structure endowed material  

 Computational multiscale modeling of concrete                

 



COMPUTATIONAL MULTISCALE MODELING  OF CONCRETE 

• Stress-strain law obtained from low-level physics  

macro  
strain: 𝜀𝜀 

Non-linear RVE equilibrium 
 problem 

macro 
 stress:  𝜎𝜎 
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 Every scale is solved by finite elements !!!! 
 (brute-force approach) 



TWO-SCALE FOUR POINT BENDING TEST 
OF A NOTCHED BEAM 

 Ph. D. Thesis:  Manuel Caicedo  2015  

Mortar Aggregates 

Cohesive 
bands (failure 
mechanisms) 

Meso-scale RVE 

COMPUTATIONAL MULTISCALE MODELING  OF CONCRETE 



TWO-SCALE FOUR POINT BENDING TEST 

COMPUTATIONAL MULTISCALE MODELING  OF CONCRETE 



Extra-granular failure 
(hard aggregates) 

Intra-granular failure  
(soft aggregates) 

Prescribed horizontal  
failure mode 

Prescribed vertical  
failure mode 

TWO-SCALE FOUR POINT BENDING TEST 

Structural response sensitivity to the lower scale failure mechanism 

COMPUTATIONAL MULTISCALE MODELING  OF CONCRETE 



Structural response (force vs. displacement) 

Regular  
aggregate 

Light aggregate 

Structural response sensitivity to the lower scale failure mechanism 

TWO-SCALE FOUR POINT BENDING TEST 

  M. Caicedo,  E.Roubin  2014  

Prescribed  
vertical 

 Prescribed 
horizontal 

COMPUTATIONAL MULTISCALE MODELING  OF CONCRETE 



 STRUCTURAL COLLAPSE  

AND  

CRACKING OF CONCRETE 



Load-factor vs. crest displacement   Ph. D. Thesis:  S. Blanco  2006  

STRUCTURAL COLLAPSE MODELING OF CONCRETE 

“Scalere” dam, Italy  (1911-1912) 



Load-factor vs. crest displacement   Ph. D. Thesis:  S. Blanco  2006  

STRUCTURAL COLLAPSE MODELING OF CONCRETE 

“Scalere” dam, Italy  (1911-1912) 







Alqueva dam,(Portugal) 
Tectonic Fault 

Experimental  mock-up 
(LNEC, Portugal) 

STRUCTURAL COLLAPSE MODELING OF CONCRETE 



THE FUTURE .... 



Meta-materials (beyond-materials): materials engineered to 
have properties that have not yet been found in nature 

Negative  refractive index  
(NASA Glenn Research) 

 

On-demand buckling 
  (shape-memory  

materials)  

Negative Poisson-ratio 
 (Giusti 2009) 

Reinforced concrete: engineered meta-material !!!   
(the first one?)  

COMPUTATIONAL MATERIAL DESIGN 
Motivation 



COMPUTATIONAL MATERIAL DESIGN 
COMPDESMAT project 



           Yates et al. 

Synthetic materials 
with 1D fibers. 

             Miehe /2003 

         Herkovich /1998 

Carbon/Epoxy 

Material design in terms of: 
• arrangement 
• morphology 
• topology (in structural materials) 

COMPUTATIONAL MATERIAL DESIGN 
COMPDESMAT project 



• GOAL: Minimize de structural compliance (maximize stiffness) by 
optimal design of the structural topology with a given material 
volume 
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Structural topological design: 
minimum compliance (maximum stiffness) 

→
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• GOAL: Minimize de structural compliance (maximize stiffness) by optimal design 
of the material topology for a given material volume reduction 

Material topological design: 
minimum compliance (maximum stiffness) 
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• GOAL: Minimize de structural compliance (maximize stiffness) by optimal design 
of the material topology for a given material volume reduction 
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38 % reduction 
of initial 
compliance 

Material topological design: 
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Concurrent (structural & material)  
topological design 
 • GOAL: Minimize de structural compliance (maximize stiffness) by 
optimal design of both the structural and material topology for a 
given total mass reduction. 
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Manufacturability issues 
CONTINUUM vs. DISCRETE DESIGN 
 • Component-based  manufacturing 



Cantilever beam.  
Concurrent (macro/micro-scale) topological design. 
•  Discrete (by-component) design 
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