# Efeitos da nanossílica no desempenho e na durabilidade de concretos submetidos ao ataque de CO<sub>2</sub>

FERNANDO DO CARMO PEREIRA – MESTRE CLEBER EDUARDO FERNANDES LEAL – DOUTORANDO FERNANDA GIANNOTTI DA SILVA FERREIRA – PROFESSORA DOUTORA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL DA UNIVERSIDADE FEDERAL DE SÃO CARLOS - (PPGECIV/UFSCAR)

#### **RESUMO**

A NANOSSÍLICA É UMA ADIÇÃO MINERAL COM DIÂMETRO DE 3 A 150 NM, QUE INTERAGE DE FORMA QUÍMICA E FÍSICA COM A MATRIZ CIMENTÍCIA DEVIDO AOS SEUS EFEITOS FÍLER E POZOLÂNICO. ESTE ARTIGO BUSCOU AVALIAR AS PROPRIEDADES MECÂNICAS, FÍSICAS E DE DURABILIDADE FRENTE À CARBONA-TAÇÃO ACELERADA DE CONCRETOS COM DIFERENTES TEORES DE ADIÇÃO DE NANOSSÍLICA. PARA TANTO, O ESTUDO FOI REALIZADO EM CONCRETOS COM RELAÇÃO ÁGUA/AGLOMERANTE IGUAL A 0,56 E DIFERENTES TEORES DE NANOS-SÍLICA (1%, 5% E 10%), UM TRAÇO COM 1% DE ADIÇÃO DE NANOSSÍLICA EM CONJUNTO COM 10% DE SÍLICA ATIVA E TAMBÉM UM TRAÇO REFERÊNCIA (SEM ADIÇÃO MINERAL). OS TRAÇOS COM OS MAIORES TEORES DE NANOSSÍLICA APRESENTARAM MELHOR DESEMPENHO MECÂNICO E TAMBÉM MAIOR DURABILI-DADE FRENTE AO AVANÇO DA FRENTE DE CARBONATAÇÃO.

Palavras-chave: concreto, durabilidade, carbonatação, nanossílica.

### I. INTRODUÇÃO

om o passar do tempo, a deterioração de edificações em concreto armado e a necessidade de ampliar sua durabilidade em meios agressivos fomentaram o início dos estudos relacionados aos mecanismos de degradação do material, bem como o desenvolvimento de tecnologias para seu reparo, reforço ou recuperação.

Segundo a ABNT NBR 6118:2014, a durabilidade de uma estrutura representa sua habilidade de resistir às influências ambientais definidas, previamente e em conjunto, pelo autor do projeto estrutural e pelo contratante. Sob um aspecto qualitativo, a ABNT NBR 15575-1:2013 define durabilidade como a "capacidade da edificação e de seus sistemas de desempenhar suas funções, ao longo do tempo e sob condições de uso e manutenção especificadas".

Falhas na execução, falta de manutenção e uso diferente do previsto em projeto são frequentes causadores de manifestações patológicas nas edificações, assim como alternativas insuficientes para neutralizar as condições ambientais do local onde a estrutura está inserida. A corrosão das armaduras se destaca entre os problemas mais frequentes, estando diretamente relacionada com um fenômeno físico--químico que ocorre entre o dióxido de carbono presente na atmosfera e os compostos da pasta de cimento – a carbonatação.

A ação do dióxido de carbono tem grande influência na durabilidade de uma estrutura, sobretudo em cidades industrializadas e com altas concentrações de CO<sub>a</sub>. Dependendo da porosidade do concreto, das características dos materiais constituintes e do meio ambiente, o CO<sub>2</sub> presente no ar adentra os poros do compósito, reage com o hidróxido de cálcio e provoca a sua carbonatação. Esse fenômeno, que é marcado pela transformação dos íons alcalinos em sais de carbonatos, reduz o pH da solução contida nos poros do concreto e leva à despassivação da armadura. Em outras palavras, o aço perde sua película protetora e torna-se propenso a corroer, como se estivesse diretamente exposto à atmosfera (CASCUDO; CARASEK, 2011).

Considerando a importância econômica e ambiental representada pela durabilidade das estruturas de concreto, as adições minerais desempenham um importante papel na busca pela minimização dos efeitos provocados pelos agentes agressivos e causadores das manifestações patológicas. Segundo Dal Molin (2011), as adições minerais, a partir das suas características físicas e químicas, podem dar origem a materiais cimentícios mais duráveis. Sobre a adição de nanossílica ao concreto, Nili, Ehasai e Shabani (2010); Sánchez et al. (2016); Zanon, Schmalz e Ferreira (2018) apontam que é possível elevar a resistência à compressão do material e, ao mesmo passo, diminuir a sua permeabilidade.

Visando ao aumento da durabilidade, melhora no sistema de poros e inibição de agentes agressores, este trabalho propõe um estudo experimental fundamentado na adição de nanossílica a traços distintos de concreto. Com a submissão das amostras à ação controlada do CO<sub>2</sub>, pretende-se analisar a formação da frente de carbonatação, bem como investigar a influência dessa adição mineral nas propriedades físicas e no desempenho mecânico das misturas obtidas.

#### 2. DESENVOLVIMENTO

No início deste programa experimental caracterizaram-se os materiais utilizados de acordo com as normas específicas. Após a definição dos tracos, analisaram-se suas propriedades mecânicas e físicas segundo os ensaios de resistência à compressão axial e de absorção de água por capilaridade. Por fim, verificou-se, por meio do ensaio de carbonatação acelerada, a durabilidade dos concretos guando submetidos à ação do CO<sub>2</sub>.

#### Materiais utilizados 2.1

Foram utilizados nesta pesquisa: cimento Portland do tipo CP V ARI; agregado miúdo natural de origem quartzosa; agregado graúdo basáltico; nanossílica coloidal; sílica ativa; e água. As características físicas e químicas do cimento empregado seguem apresentadas na Tabela 1.

O agregado miúdo apresentou dimensão máxima característica de 2,4 mm e módulo de finura de 1,94, enquanto o agregado graúdo exibiu dimensão máxima característica de 9.5 mm e módulo de finura de 5.81. Neste caso, a porção ideal entre os agregados foi de 60% de agregado graúdo e 40% de agregado miúdo (tomada em função da maior massa unitária obtida). O traço foi fixado para todas as misturas em 1:m = 3,2, sendo m igual ao total de agregados.

|                                        | Proprieda                        | ides físicas                |                           | Propriedades químicas                               |                                 |                                           |  |
|----------------------------------------|----------------------------------|-----------------------------|---------------------------|-----------------------------------------------------|---------------------------------|-------------------------------------------|--|
| Características e propriedades         |                                  | Valores obtidos             | Limites<br>NBR 16697:2018 | Componentes                                         | Valores obtidos<br>(% em massa) | Limites<br>NBR 16697:2018<br>(% em massa) |  |
| Massa espe                             | ecífica (NBR NM 23)              | 3,12 g/cm <sup>3</sup>      | **                        | Perda ao fogo (PF)                                  | 3,79                            | < 4,5%                                    |  |
| Início de p                            | bega (NBR NM 65)                 | 135 min                     | > 120 min                 | Anidro silícico (SiO <sub>2</sub> )                 | 19,17                           | **                                        |  |
| Fim de p                               | ega (NBR NM 65)                  | 210 min                     | < 600 min                 | Óxido de cálcio (CaO)                               | 63,97                           | **                                        |  |
| Água para pasta de consistência normal |                                  | 31,5 %                      | **                        | Óxido de magnésio (MgO)                             | 0,61                            | < 6,5%                                    |  |
| Figure                                 | Retido 75 µm (#200)              | 0,1 %                       | < 6,0 %                   | Óxido férrico (Fe <sub>2</sub> O <sub>3</sub> )     | 3,21                            | **                                        |  |
| Finura                                 | Área específica*                 | 473 m²/kg                   | > 300 m²/kg               | Óxido de alumínio (Al <sub>2</sub> 0 <sub>3</sub> ) | 5,03                            | **                                        |  |
|                                        | 1 dia                            | 27,5 MPa                    | > 14,0 MPa                | Anidrido sulfúrico (SO <sub>3</sub> )               | 2,84                            | < 3,5%                                    |  |
| Resistência à                          | 3 dias                           | 42,0 MPa                    | > 24,0 MPa                | Óxido de sódio (Na <sub>2</sub> 0)                  | 0,06                            | **                                        |  |
| (f_)                                   | 7 dias                           | 48,7 MPa                    | > 34,0 MPa                | Óxido de potássio (K <sub>2</sub> 0)                | 0,61                            | **                                        |  |
| ∖ cl∕                                  | 28 dias                          | 52,2 MPa                    | **                        | Equivalente alcalino (em Na <sub>2</sub> 0)         | 0,461                           | **                                        |  |
|                                        |                                  | _                           | _                         | Óxido de cálcio livre (CaO)                         | 1,76                            | **                                        |  |
| _                                      |                                  |                             |                           | Resíduo insolúvel (RI)                              | 0,85                            | < 1,0%                                    |  |
|                                        |                                  |                             | _                         | Anidrido carbônico (CO <sub>2</sub> )               | 2,38                            | < 3,0%                                    |  |
| * Determinada a p                      | artir do método de Blaine; ** Va | alores Limites não especifi | cados pela NBR 16697:20   | 8.                                                  |                                 |                                           |  |

Tabela 1 – Propriedades do CP V ARI

<sup>1</sup> A NBR 15577:2018 limita o teor de equivalente alcalino (em Na<sub>2</sub>0) em 0,6%.

As características físicas dos agregados utilizados nesse programa experimental são apresentadas na Tabela 2.

A Tabela 3 apresenta a caracterização química e física da sílica ativa empregada nesse programa experimental.

A adição utilizada foi a nanossílica coloidal, cujas principais características são apresentadas na Tabela 4.

#### 2.2 Definição dos traços

Para que o efeito das adições

# Tabela 2 – Caracterização física dos agregados

| Característica                            | Agregado<br>miúdo | Agregado<br>graúdo |
|-------------------------------------------|-------------------|--------------------|
| Massa específica<br>(g/cm <sup>3</sup> )  | 2,52              | 2,77               |
| Massa unitária<br>seca e solta<br>(kg/m³) | 1532,46           | 1422,32            |
| Massa unitária<br>compactada<br>(kg/m³)   | 1661,49           | 1568,72            |
| Absorção de<br>água (%)                   | 0,20              | 2,26               |
| Material<br>pulverulento (%)              | 1,41              | 1,00               |
|                                           |                   |                    |

sobre a resistência ao ataque de CO<sub>2</sub> nos concretos fosse analisado, estabeleceu--se a relação água/agl. de 0,56, conforme trabalho de Pereira (2019). A substituição de cimento por nanossílica foi feita em massa (de acordo com a recomendação do fabricante), adotando-se três diferentes teores de nanossílica (1%, 5% e 10%) em relação à massa de aglomerante. A sílica ativa foi incorporada em um dos tracos no teor de 10% em volume (buscando-se manter o mesmo volume das misturas, uma vez que a massa específica da sílica ativa é menor que a do cimento), a fim de analisar o seu efeito combinado com a nanossílica. Para comparação, o concreto referência (sem adição mineral) também foi avaliado.

Para um melhor entendimento, adotou-se a nomenclatura C56-N-S, sendo: C referente ao concreto; 56, à relação água/agl. de 0,56; N, teor de nanossílica (%) em substituição ao aglomerante em massa; e S, teor de sílica ativa (%) em substituição ao cimento em volume. Por exemplo, o traço denominado C56-1-10 se refere a um concreto com relação água/agl. igual a 0,56; teor de nanossílica de 1% e de sílica ativa de 10%. O traço referência, que não possui adição, foi identificado como C56-REF.

Vale ressaltar que a nanossílica empregada encontra-se dispersa em uma solução aquosa, onde 50% da massa total é composta de nanopartículas de sílica e os outros 50% de água. Na definição dos traços, foi considerada como adição ao concreto apenas a porcentagem de nanossílica presente na solução, o restante que consiste nos 50% de água foi descontado da quantidade de água de amassamento.

A Tabela 5 apresenta a composição de cada traço e a média dos diâmetros de espalhamento obtidos. Embora a consistência das misturas tenha variado, adotou-se uma consistência mínima de (230 ± 10) mm.

O procedimento de mistura dos concretos empregado neste programa experimental é apresentado na Figura 1. Para tal, utilizou-se um misturador do tipo eixo vertical, que, pela energia de mistura, favorece uma melhor dispersão das partículas.

#### 2.3 Ensaios realizados

Os ensaios realizados neste programa experimental foram executados em

# Tabela 4 – Principais características da nanossílica

| Características                          | Resultados     |
|------------------------------------------|----------------|
| Aspecto                                  | Líquido branco |
| Teor de sólidos (%)                      | 50             |
| pН                                       | 9,5            |
| Tamanho médio da<br>partícula (nm)       | 35             |
| Massa específica<br>(g/cm <sup>3</sup> ) | 1,4            |
| Viscosidade ( $v$ )                      | 8              |
| Fonte: AkzoNobel                         |                |

#### Tabela 3 – Características físicas e químicas da sílica ativa

| Características químicas                      |       | Características físicas         |       |  |  |  |
|-----------------------------------------------|-------|---------------------------------|-------|--|--|--|
| Características                               | Valor | Características                 | Valor |  |  |  |
| Equivalente alcalino em Na <sub>2</sub> O (%) | 0,7   | Densidade (g/cm <sup>3</sup> )  | 0,35  |  |  |  |
| Perda ao fogo (%)                             | 3,7   | pH                              | 7,9   |  |  |  |
| SiO <sub>2</sub> (%)                          | 93,0  | Umidade (%)                     | 0,1   |  |  |  |
| Na <sub>2</sub> 0 (%)                         | 0,2   | Retido 45 mm (#325) (%)         | 3,7   |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub> (%)            | 0,5   | Tamanho médio da partícula (µm) | 0,8   |  |  |  |
| CaO (%)                                       | 0,5   | _                               | _     |  |  |  |
| MgO (%)                                       | 0,4   | —                               | —     |  |  |  |
| Al <sub>2</sub> O <sub>3</sub> (%)            | 0,2   | —                               | —     |  |  |  |
| K <sub>2</sub> O (%)                          | 0,9   | —                               | —     |  |  |  |
| Fonte: Dow Corning Silício do Brasil          |       |                                 |       |  |  |  |

concreto moldado em corpos de prova cilíndricos (Ø50 x 100mm), seguindo as normas e idades apresentadas na Tabela 6. O uso de corpos de prova nessas dimensões foi possível em função da dimensão máxima do agregado utilizado, que segundo Carvalho *et al.* (2017), não há diferença significativa entre resultados obtidos utilizando-se corpos de prova cilíndricos de Ø100 x 200 mm. Os resultados obtidos foram tratados estatiscamente através de Análise de Variância (ANOVA) e posteriormente submetidos ao teste de Tukey.

O ensaio de durabilidade dos concretos foi realizado em câmara de carbonatação acelerada, conforme retrata a Figura 2, com concentração de (15  $\pm$ 2)% de CO<sub>2</sub>, umidade relativa entre 70% e 80%, e temperatura de (23  $\pm$  2)°C. Tais condições, na realização deste ensaio, corresponderam às mesmas empregadas por Almeida (2013) e Santos (2019). A identificação da frente de carbonatação foi conduzida pelo método colorimétrico com aspersão de fenolftaleína.

Para a realização do ensaio de medida da profundidade de carbonatação,

| Umedecimento da cuba                                                      |
|---------------------------------------------------------------------------|
| Adição da areia e 90% da agua, e ligar a argamassadeira<br>* 30" Raspagem |
| Ligar e adicionar o cimento                                               |
| • 2' Raspagem                                                             |
| • 2'30" Ligar e adição de 10% da água e o aditivo SP                      |
| + 3'30" Raspagem                                                          |
| +4' Mistura                                                               |
|                                                                           |
| • 5' 30" Raspagem                                                         |
| • <u>6'</u> Ligar argamassadeira                                          |
| → 7' 30" Adicionar nanossílica                                            |
| ◆ 8' Raspagem                                                             |
| • 8' 30" Ligar e adicionar brita                                          |
| • 9' 30" ] Término da mistura                                             |
|                                                                           |
|                                                                           |
| ▶ Figura 1                                                                |
| Procedimento de mistura                                                   |
| dos concretos                                                             |

Tabela 5 – Composição dos traços de concreto e consistências obtidas

| Concretos   |         | Consistência |      |      |       |        |        |
|-------------|---------|--------------|------|------|-------|--------|--------|
| 00110101000 | Cimento | A.G.         | A.M. |      |       | Água   | (mm)   |
| C56-REF     | 1000,0  | 1920         | 1280 | —    | —     | 560,0  | 294,00 |
| C56-1-0     | 990,0   | 1920         | 1280 | _    | 10,0  | 550,0  | 277,00 |
| C56-5-0     | 950,0   | 1920         | 1280 | _    | 50,0  | 510,0  | 250,33 |
| C56-10-0    | 900,0   | 1920         | 1280 |      | 100,0 | 460,0  | 222,67 |
| C56-1-10    | 890,3   | 1920         | 1280 | 67,3 | 19,3  | 532,00 | 267,67 |

| ▶ Tabela 6 – Ensaios realizados        |               |                     |  |  |  |  |
|----------------------------------------|---------------|---------------------|--|--|--|--|
| Ensaio                                 | Norma         | Idade               |  |  |  |  |
| Resistência à compressão axial         | NBR 5739:2018 | 7, 28 e 63 dias     |  |  |  |  |
| Absorção de água por capilaridade      | NBR 9779:2012 | 28 dias             |  |  |  |  |
| Profundidade de carbonatação acelerada | —             | 140, 168 e 196 dias |  |  |  |  |

os corpos de prova foram desmoldados após 1 dia da concretagem, passaram por 14 dias de cura em câmara úmida e mais 14 dias de pré-condicionamento em ambiente de laboratório antes da inserção na câmara de carbonatação acelerada.

#### 3. RESULTADOS E DISCUSSÃO

#### 3.1 Resistência à compressão

Três corpos de prova de cada um dos cinco traços de concreto estudados foram submetidos ao ensaio de resistência à compressão axial. Os resultados obtidos são expostos na Tabela 7.

Nota-se que os traços com 5% (C56-5-0) e com 10% (C56-10-0) de adição de nanossílica apresentaram os maiores valores de resistência à compressão. Aos 63 dias, os concretos contendo 5% e 10% de nanossílica apresentaram aumentos de 12,1% e 13,9% em relação ao traço de referência, respectivamente. Destaca-se

que tais ganhos de resistência foram considerados significativos pela análise estatística.

Cabe destacar, que, ao diminuir o fator água/agl., ganhos maiores de resistência são possíveis. Conforme constatado no trabalho de Pereira (2019), aos 63 dias, um traço de concreto com 10% de adição de nanossílica e fator água/agl. igual a 0,40



Figura 2 Câmara de carbonatação

#### Tabela 7 – Resistência à compressão dos concretos

| ldade de                                                                                                                          | Desistânsis à semproseão              | Idade   |         |         |          |          |  |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|---------|---------|----------|----------|--|
| ensaio (dias)                                                                                                                     | Resistencia a compressao              | C56-REF | C56-1-0 | C56-5-0 | C56-10-0 | C56-1-10 |  |
|                                                                                                                                   | Valor médio (MPa)                     | 39,34   | 38,86   | 40,20   | 42,13    | 37,84    |  |
| 7                                                                                                                                 | Desvio padrão (MPa)                   | 0,59    | 1,62    | 1,32    | 0,71     | 0,75     |  |
| 7                                                                                                                                 | C.V.* (%)                             | 1,49    | 4,17    | 3,29    | 1,68     | 1,99     |  |
|                                                                                                                                   | Diferença significativa com C56-REF** |         | Não     | Não     | Não      | Não      |  |
|                                                                                                                                   | Valor médio (MPa)                     | 45,96   | 46,34   | 47,20   | 47,77    | 46,20    |  |
| 20                                                                                                                                | Desvio padrão (MPa)                   | 1,25    | 0,91    | 2,57    | 2,05     | 1,98     |  |
| 20                                                                                                                                | C.V.* (%)                             | 2,73    | 1,97    | 5,44    | 4,30     | 4,28     |  |
|                                                                                                                                   | Diferença significativa com C56-REF** | -       | Não     | Não     | Não      | Não      |  |
|                                                                                                                                   | Valor médio (MPa)                     | 46,78   | 49,15   | 53,30   | 52,44    | 49,24    |  |
| <u></u>                                                                                                                           | Desvio padrão (MPa)                   | 0,49    | 1,26    | 0,17    | 1,16     | 1,00     |  |
| 03                                                                                                                                | C.V.* (%)                             | 1,06    | 2,57    | 0,32    | 2,21     | 2,03     |  |
|                                                                                                                                   | Diferença significativa com C56-REF** | —       | Não     | Sim     | Sim      | Não      |  |
| * Coeficiente de variação; ** Resultado do Teste de Tukey – Sim: há diferença significativa; Não: não há diferença significativa. |                                       |         |         |         |          |          |  |

apresentou um ganho de 27% em relacão à mistura de referência.

A incorporação de nanossílica à mistura colaborou para o aumento da resistência à compressão do concreto, fato este, também observado na pesquisa de Saloma, Iswandi e Mikrajuddin (2013), cujos resultados também indicam o aumento da resistência à compressão dos concretos, à medida que se eleva o teor de adição de nanossílica.

A adição combinada de sílica ativa e nanossílica não promoveu um aumento relevante na resistência à compressão no concreto com os teores incorporados neste programa experimental (C56-1-10), porém, Andrade (2017) ao analisar combinações diversas obteve os melhores resultados aos 28 dias para o traço contendo 10% de sílica e 3% de nanossílica. Portanto, nota-se que a alteração dos teores de adições pode contribuir para melhores resultados, quando sílica ativa é incorporada no concreto junto à nanossílica.

# 3.2 Absorção de água por capilaridade

Concluído o ensaio de absorção de

água por capilaridade, produziu-se a Tabela 8 e o gráfico exposto na Figura 3, que expressam os resultados obtidos. Para cada traço foram ensaiados três corpos de prova.

Assim como no ensaio de resistência à compressão axial, os concretos que apresentaram os melhores resultados no ensaio de absorção de água por capilaridade foram os traços com adição de 5% e 10% de nanossílica. Ao final das 72h de experimento, o concreto que apresentou o menor índice de absorção capilar foi o C56-10-0, com 46% de redução, seguido

| Tadela 8 – Adsorção de agua por capitaridade dos concretos ãos 28 días                                |                                   |       |       |       |       |                    |                         |  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------|-------|-------|-------|-------|--------------------|-------------------------|--|
| Conorotoo                                                                                             | Absorção por capilaridade (g/cm²) |       |       |       |       | Altura de ascensão | Diferença significativa |  |
| GUIICIEIUS                                                                                            | 3h                                |       | 24h   | 48h   | 72h   | (cm)               | com o C56-REF*          |  |
| C56-REF                                                                                               | 0,342                             | 0,488 | 0,973 | 1,283 | 1,415 | 10                 | —                       |  |
| C56-1-0                                                                                               | 0,353                             | 0,500 | 0,976 | 1,273 | 1,408 | 10                 | Não                     |  |
| C56-5-0                                                                                               | 0,310                             | 0,434 | 0,827 | 1,063 | 1,207 | 7,6                | Sim                     |  |
| C56-10-0                                                                                              | 0,211                             | 0,286 | 0,531 | 0,668 | 0,757 | 4,9                | Sim                     |  |
| C56-1-10                                                                                              | 0,335                             | 0,470 | 0,903 | 1,172 | 1,342 | 8,6                | Não                     |  |
| * Resultado do Teste de Tukey – Sim: há diferença significativa; Não: não há diferença significativa. |                                   |       |       |       |       |                    |                         |  |





pelo traço C56-5-0, com redução de 15%, ambos comparados com o traço de referência (C56-REF). Os demais teores de adição não apresentaram diferença significativa após a análise estatística dos resultados.

Zahedi, Ramezanianpour e Ramezanianpour (2015); Joshaghani e Moeini (2017) estudaram as propriedades físicas de compósitos cimentícios com incorporação de nanossílica nos teores máximos de adição de 5% e 6%, respectivamente, sendo que quanto maiores os teores de substituição, menores os índices de absorção de água obtidos, assim como observado nesta pesquisa.

# 3.3 Durabilidade frente à ação de CO<sub>2</sub>

Os primeiros resultados foram mensurados com 140 dias do início do ensaio, que foi finalizado ao completar 196 dias, quando também foi realizada a última medida da frente de carbonatação. A Figura 4 apresenta a profundidade de carbonatação encontrada em cada traço de concreto ao longo do período de ensaio. A Figura 5 retrata o avanço da frente de carbonatação.

Após a realização do ensaio de carbonatação acelerada, apesar de pequena, foi possível identificar frente de carbonatação em todos os traços. O traço com adição combinada de 1% de nanossílica e 10% de sílica ativa (C56-1-10) apresentou uma frente de carbonatação maior que o traço de referência (C56-REF), com diferença considerada significativa em todas as idades. Neste, acredita-se que o grande teor de adição tenha colaborado para o avanço do ataque de CO<sub>2</sub>. Samimi *et al.* (2018) afirmam que a profundidade de carbonatação é diretamente proporcional ao teor de adições, devido ao teor de hidróxido de cálcio presente.

Os traços com 5% (C56-5-0) e com 10% (C56-10-0) de adição de nanossílica foram os que exibiram as menores frentes de carbonatação. Nesse caso, o efeito físico foi o que mais influenciou, lembrando que esses dois traços também apresentaram as melhores propriedades físicas e mecânicas.



Diniz (2018) afirma que, em matrizes cimentícias com grande presença de hidróxido de cálcio, o efeito químico é o que rege a carbonatação, como ocorreu no traco com adição combinada de 1% de nanossílica e 10% de sílica ativa (C56-1-10). O autor afirma ainda que, conforme o teor de hidróxido de sódio é reduzido, o que exerce maior influência no ataque de CO<sub>2</sub> passa a ser o efeito físico, relacionado ao diâmetro dos poros, justamente o que foi notado nos concretos C56-5-0 e C56-10-0.

#### 4. CONCLUSÕES

A nanossílica colaborou significativamente com o aumento da resistência à compressão dos concretos, mesmo com um fator água/agl. de 0,56, que pode ser considerado alto, foi possível notar a influência da adição. O mesmo ocorreu no ensaio de absorção de água por capilaridade, onde a presença da nanossílica permitiu a redução do coeficiente de absorção, indicando que, ao incorporar esse material, altera-se a conexão dos poros do concreto.

Para o fator água/agl. utilizado neste programa experimental, prevaleceu o efeito físico da adição da nanossílica, que contribuiu para reduzir a frente de carbonatação. Mesmo sendo uma adição relacionada ao consumo de portlandita devido às reações pozolânicas, neste caso, o efeito da adição de nanossílica nos maiores teores dificultou a penetração e ataque de CO<sub>2</sub>. A incorporação combinada de sílica ativa e nanossílica, no entanto, não forneceu bons resultados frente à ação dióxido de carbono.

Por fim, conclui-se que para os tipos de concretos estudados nesta pesquisa a adição de nanossílica forneceu uma melhora de suas propriedades físicas, mecânicas e da durabilidade frente à ação do CO<sub>a</sub>. Algo que se tornou mais evidente nos traços com os teores de 5% e 10% de incorporação de nanossílica.

#### AGRADECIMENTOS

Agradecimentos à Dow Corning Silício do Brasil, à AkzoNobel e ao PPGECiv/UESCar.

## ▶ REFERÊNCIAS BIBLIOGRÁFICAS

- [1] ALMEIDA, F. do C. R. Avaliação do potencial de corrosão de armaduras em concretos com substituição parcial do agregado miúdo pela areia de cinza do bagaço da cana-de-açúcar - ACBC. Dissertação (Mestrado) - Universidade Federal de São Carlos, São Carlos, 2013.
- [2] ANDRADE, D. DA S. Microestrutura de pastas de cimento Portland com incorporação de nanosílica coloidal e adições minerais altamente reativas. Tese (Doutorado). Universidade de Brasília, 2017.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto Procedimento. Rio de Janeiro, 2014. 238p. [3]
- . NBR15575-1: Edificações habitacionais Desempenho Parte 1: Requisitos gerais. Rio de Janeiro, 2013. 71p. [4]
- [5] CARVALHO, J. M. F; CAMPOS, P. A. M; BATISTA, J. O. S; NATALI; J. F. SOUZA, F. S; PEIXOTO, R. A. F. Estudo comparativo de resultados de resistência à compressão de concretos produzidos com agregados graúdos da zona granulométrica 9,5/25 utilizando corpos de prova cilíndricos Ø5x10 cm e Ø10x20 cm. In: CONGRESSO BRASILEIRO DE CONCRETO, 59., 2017, Bento Gonçalves. Anais... São Paulo: IBRACON, 2017.
- [6] CASCUDO, O.; CARASEK, H. Acão da Carbonatacão no Concreto. In: Concreto: Ciência e Tecnologia. 1 ed. São Paulo: IBRACON, 2011. Cap. 24, p. 849-885.
- [7] DAL MOLIN, D. C. C. Adições Minerais. In: Concreto: Ciência e Tecnologia. v. 1. São Paulo: IBRACON, 2011. Cap. 08, p.261–309.
- [8] DINIZ, H. A. A. Estudo das propriedades mecânicas e dos parâmetros de durabilidade de concretos autoadensáveis com elevados teores de adições minerais submetidos à carbonatação. 2018. 160 p. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal do Rio Grande do Norte, Natal, 2018.
- [9] JOSHAGHANI, A.; MOEINI, M. A. Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Construction and Building Materials, v. 152, p. 818-831, 2017.
- [10] NILI, M.; EHSANI, A.; SHABANI, K. Influence of Nano-SiO2 and Microsilica on Concrete Performance. In: Proceedings Second International Conference on Sustainable Construction Materials and Technologies. 2010. Universita Politecnica delle Marche, Ancona, Italy, 2010.
- [11] PEREIRA, F. do C. Estudo da carbonatação de concretos com adição de nanosílica. Dissertação (Mestrado) Universidade Federal de São Carlos, São Carlos, 2019.
- [12] SALOMA, A. N.; ISWANDI, I.; MIKRAJUDDIN, A. Experimental investigation on nanomaterial concrete. International Journal of Civil & Environmental Engineering. v. 13. n. 03, p. 15 - 20, 2013.
- [13] SAMIMI, K.; KAMALI–BERNARD, S.; MAGHSOUDI, A. A. Durability of self-compacting concrete containing pumice and zeolite against acid attack, carbonation and marine environment. Construction and Building Materials, v. 165, p.247-263, 2018.
- [14] SÁNCHEZ, E.; BERNAL, J.; LEÓN, N. MORAGUES, A. Propriedades reológicas e mecânicas de um concreto autoadensável, com a adição de nano sílica e de micro sílica (sílica ativa). ALCONPAT, v. 6, n. 1, p. 1 - 14, 2016.
- [15] SANTOS, M. O. dos. Estudo de concretos com adição de nanosílica submetidos à ação combinada de cloretos e CO2. Dissertação (Mestrado) Universidade Federal de São Carlos, São Carlos, 2019.
- [16] ZAHEDI, M.; RAMEZANIANPOUR, A. A.; RAMEZANIANPOUR, A. M. Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration. Construction and Building Materials, v. 78, p. 354-361, 2015.
- [17] ZANON, T.; SCHMALZ, R.; F. G. S. FERREIRA. Avaliação dos efeitos da nanossílica em concretos submetidos à ação de íons cloreto. ALCONPAT, v. 8, n. 2, p. 138 - 149, 2018.